干旱区研究 ›› 2025, Vol. 42 ›› Issue (9): 1715-1725.doi: 10.13866/j.azr.2025.09.15 cstr: 32277.14.AZR.20250915
张坤1(
), 吴新萍2, 刘永强1(
), 张丽芳1, 秦艳1, 杨雨鹭1, 淦惠1
收稿日期:2025-01-05
修回日期:2025-03-13
出版日期:2025-09-15
发布日期:2025-09-16
通讯作者:
刘永强. E-mail: liuyq@xju.edu.cn作者简介:张坤(1993-),男,博士研究生,主要从事陆地生态系统碳循环. E-mail: zkun_@stu.xju.edu.cn
基金资助:
ZHANG Kun1(
), WU Xinping2, LIU Yongqiang1(
), ZHANG Lifang1, QIN Yan1, YANG Yulu1, GAN Hui1
Received:2025-01-05
Revised:2025-03-13
Published:2025-09-15
Online:2025-09-16
摘要:
“双碳”背景下,探究碳储量时空演变以及未来情景预测对维系生态平衡、促进区域高质量发展,实现“碳中和”目标具有重要意义。新疆作为生态脆弱、气候敏感区域,模拟其过去和未来土地利用变化和碳储量,有助于有效制定减排策略及加强生态系统恢复。本研究基于可持续发展理论,耦合PLUS-InVEST模型,综合评估1990—2050年新疆土地利用变化及对碳储量响应。结果表明:(1) 1990—2020年新疆土地利用以未利用地、草地为主,分别占新疆土地利用总面积的67%和23%以上。未利用地和草地呈现逐年下降趋势,其他地类均呈现上升趋势。(2) 草地是新疆碳储量的主要贡献地类,草地退化是导致新疆碳储量损失的主要原因,1990—2020年草地退化使碳储量损失224.16 t。(3) 2050年生态保护情景碳储量增加6.19×107 t;经济优先情景碳储量损失3.52×107 t。本文通过定量评价过去和未来30 a新疆土地利用变化及其对碳储量的影响,为新疆土地管理决策提供可靠的参考资料和准确的数据支持。
张坤, 吴新萍, 刘永强, 张丽芳, 秦艳, 杨雨鹭, 淦惠. 基于PLUS-InVEST模型的新疆碳储量时空演变与预测[J]. 干旱区研究, 2025, 42(9): 1715-1725.
ZHANG Kun, WU Xinping, LIU Yongqiang, ZHANG Lifang, QIN Yan, YANG Yulu, GAN Hui. Spatiotemporal evolution and prediction of carbon storage in Xinjiang using the PLUS-InVEST model[J]. Arid Zone Research, 2025, 42(9): 1715-1725.
表1
数据来源"
| 数据类型 | 数据名称 | 分辨率 | 数据来源 |
|---|---|---|---|
| 土地利 用数据 | CLCD | 30 m×30 m | 武汉大学( |
| 社会经 济因子 | GDP | 1 km×1 km | 资源环境科学与数据中心 ( |
| 人口数据 | 1 km×1 km | ||
| 距离因子 | 到城市距离 | 1 km×1 km | OpenStreetMap ( |
| 到水域距离 | 1 km×1 km | ||
| 到车站距离 | 1 km×1 km | ||
| 到高速公 路距离 | 1 km×1 km | ||
| 到主干道 路距离 | 1 km×1 km | ||
| 到次干道 路距离 | 1 km×1 km | ||
| 自然因子 | 年均降水 | 1 km×1 km | 资源环境科学与数据中心 ( |
| 年均气温 | 1 km×1 km | ||
| 土壤类型 | 1 km×1 km | ||
| DEM | 30 m×30 m | 地理空间数据云 ( | |
| 坡度 | 30 m×30 m | ||
| 坡向 | 30 m×30 m |
表4
不同情景转移矩阵"
| 发展情景 | 地类 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 |
|---|---|---|---|---|---|---|---|
| 自然发展 | 耕地 | 1 | 0 | 1 | 0 | 0 | 0 |
| 林地 | 1 | 1 | 0 | 0 | 0 | 0 | |
| 草地 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 水域 | 1 | 0 | 1 | 1 | 1 | 1 | |
| 建设用地 | 0 | 0 | 0 | 1 | 1 | 0 | |
| 未利用地 | 1 | 0 | 1 | 1 | 1 | 1 | |
| 生态保护 | 耕地 | 1 | 1 | 1 | 1 | 0 | 1 |
| 林地 | 0 | 1 | 1 | 0 | 0 | 0 | |
| 草地 | 0 | 1 | 1 | 0 | 0 | 0 | |
| 水域 | 1 | 1 | 1 | 1 | 0 | 1 | |
| 建设用地 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 未利用地 | 1 | 1 | 1 | 1 | 0 | 1 | |
| 经济优先 | 耕地 | 1 | 0 | 0 | 0 | 1 | 0 |
| 林地 | 0 | 1 | 0 | 0 | 1 | 0 | |
| 草地 | 0 | 0 | 1 | 0 | 1 | 0 | |
| 水域 | 0 | 0 | 0 | 1 | 1 | 1 | |
| 建设用地 | 0 | 0 | 0 | 0 | 1 | 0 | |
| 未利用地 | 0 | 0 | 0 | 0 | 1 | 1 |
表5
新疆1990—2050年各土地利用类型的碳储量"
| 土地利用类型 | 碳储量/t | ||||||
|---|---|---|---|---|---|---|---|
| 1990年 | 2000年 | 2010年 | 2020年 | 2050年 | |||
| 自然发展情景 | 生态保护情景 | 经济优先情景 | |||||
| 耕地 | 496.04 | 540.85 | 677.02 | 759.02 | 934.71 | 702.54 | 730.46 |
| 林地 | 192.75 | 270.06 | 317.92 | 336.50 | 384.89 | 385.50 | 337.51 |
| 草地 | 3423.11 | 3348.20 | 3309.66 | 3198.95 | 2977.34 | 3263.36 | 3182.21 |
| 水域 | 3.97 | 3.89 | 4.55 | 4.21 | 4.02 | 3.64 | 3.78 |
| 建设用地 | 0.23 | 0.65 | 1.62 | 2.66 | 3.17 | 1.52 | 5.52 |
| 未利用地 | 2009.72 | 2008.98 | 1968.61 | 1976.51 | 1985.84 | 1985.82 | 1985.86 |
| [1] | Yang P, Wang N, Zhao L, et al. Variation characteristics and influencing mechanism of CO2 flux from lakes in the Badain Jaran Desert: A case study of Yindeer Lake[J]. Ecological Indicators, 2021, 127: 107731. |
| [2] | Wang W, Yu H, Tong X, et al. Estimating terrestrial ecosystem carbon storage change in the YREB caused by land-use change under SSP-RCPs scenarios[J]. Journal of Cleaner Production, 2024, 469: 143205. |
| [3] | Zhu E, Deng J, Zhou M, et al. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China[J]. Science of the Total Environment, 2019, 646: 930-939. |
| [4] | Zhang K, Wang Y, Mamtimin A, et al. Simulation and attribution analysis of spatial-temporal variation in carbon storage in the northern slope economic belt of Tianshan Mountains, China[J]. Land, 2024, 13(5): 608. |
| [5] |
陈科宇, 字洪标, 阿的鲁骥, 等. 青海省森林乔木层碳储量现状及固碳潜力[J]. 植物生态学报, 2018, 42(8): 831-840.
doi: 10.17521/cjpe.2018.0058 |
|
[Chen Keyu, Zi Hongbiao, A Diluj, et al. Current stocks and potential of carbon sequestration of the forest tree layer in Qinghai Province, China[J]. Chinese Journal of Plant Ecology, 2018, 42(8): 831-840.]
doi: 10.17521/cjpe.2018.0058 |
|
| [6] | 滕晨凯, 肖月瑶, 张加龙, 等. 基于Landsat时间序列数据和ATC滤波算法的高山松碳储量估测[J]. 遥感学报, 2024, 28(11): 2927-2942. |
| [Teng Chenkai, Xiao Yueyao, Zhang Jialong, et al. Estimation of Pinus densata carbon storage based on Landsat time series data and ATC filtering algorithm[J]. National Remote Sensing Bulletin, 2024, 28(11): 2927-2942.] | |
| [7] | 张爽, 高启晨, 张戎, 等. 基于PLUS-InVEST模型碳储量时空演变及驱动因素分析——以纳帕海流域为例[J]. 中国环境科学, 2024, 44(9): 5192-5201. |
| [Zhang Shuang, Gao Qichen, Zhang Rong, et al. Evaluating the changes and driving factors of carbon storage using the PLUS-InVEST model: A case study of Napa Sea Basin[J]. China Environmental Science, 2024, 44(9): 5192-5201.] | |
| [8] | Li Y, Liu Y, Qin Y, et al. Evolution and predictive analysis of spatiotemporal patterns of habitat quality in the Turpan-Hami Basin[J]. Land, 2024, 13(12): 2186. |
| [9] | Huang M, Mamitimin Y, Abulizi A, et al. Integrated assessment of land use and carbon storage changes in the Tulufan-Hami Basin under the background of urbanization and climate change[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 135: 104261. |
| [10] | 李文杰, 杨俊毅, 傅博, 等. 基于PLUS-InVEST模型的大兴安岭生态系统碳储量时空变化与预测[J]. 环境工程技术学报, 2024, 14(6): 1892-1904. |
| [Li Wenjie, Yang Junyi, Fu Bo, et al. Spatial-temporal changes and prediction of carbon storage in Greater Khingan Mountains based on PLUS-InVEST model[J]. Journal of Environmental Engineering Technology, 2024, 14(6): 1892-1904.] | |
| [11] |
李冰洁, 范志韬, 曲芷程, 等. 基于InVEST-PLUS模型的黄河流域内蒙古段生态系统碳储量评价及预测[J]. 干旱区研究, 2024, 41(7): 1217-1227.
doi: 10.13866/j.azr.2024.07.13 |
|
[Li Bingjie, Fan Zhitao, Qu Zhicheng, et al. Evaluation and prediction of ecosystem carbon storage in the Inner Mongolia section of the Yellow River Basin based on the InVEST-PLUS model[J]. Arid Zone Research, 2024, 41(7): 1217-1227.]
doi: 10.13866/j.azr.2024.07.13 |
|
| [12] | 吴则禹, 刘星根, 曾金凤. 基于InVEST-PLUS模型的东江源流域碳储量时空演变与预测[J]. 环境科学学报, 2024, 44(3): 419-430. |
| [Wu Zeyu, Liu Xinggen, Zeng Jinfeng. Spatio-temporal change and prediction of carbon storage in Dongjiang River source watershed based on InVEST-PLUS model[J]. Acta Scientiae Circumstantiae, 2024, 44(3): 419-430.] | |
| [13] | 杨红霞, 何浩, 韩东爽, 等. 乌昌地区土地利用碳储量估算及多情景预测[J]. 干旱区资源与环境, 2025, 39(4): 121-131. |
| [Yang Hongxia, He Hao, Han Dongshuang, et al. Estimation and multi-scenario prediction of carbon storage in land uses in the Urumqi-Changji area[J]. Journal of Arid Land Resources and Environment, 2025, 29(4): 121-131.] | |
| [14] |
付玮, 夏文浩, 樊童生, 等. 塔里木河流域生态系统碳储量的情景预测分析[J]. 干旱区地理, 2024, 47(4): 634-647.
doi: 10.12118/j.issn.1000-6060.2023.274 |
|
[Fu Wei, Xia Wenhao, Fan Tongsheng, et al. Scenario projection analysis of ecosystem carbon stocks in the Tarim River Basin[J]. Arid Land Geography, 2024, 47(4): 634-647.]
doi: 10.12118/j.issn.1000-6060.2023.274 |
|
| [15] |
马丽娜, 张飞云, 翟玉鑫, 等. 1980—2020年新疆土地利用变化下生态系统服务价值时空演变分析[J]. 干旱区地理, 2023, 46(2): 253-263.
doi: 10.12118/j.issn.1000-6060.2022.202 |
|
[Ma Lina, Zhang Feiyun, Zhai Yuxin, et al. Temporal and spatial evolution of ecosystem service value under land use change in Xinjiang from 1980 to 2020[J]. Arid Land Geography, 2023, 46(2): 253-263.]
doi: 10.12118/j.issn.1000-6060.2022.202 |
|
| [16] |
吴瀚, 白洁, 李均力, 等. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55.
doi: 10.17521/cjpe.2022.0397 |
| [Wu Han, Bai Jie, Li Junli, et al. Study of spatio-temporal variation in fractional vegetation cover and its influencing factors in Xinjiang, China[J]. Acta Phytoecologica Sinica, 2024, 48(1): 41-55.] | |
| [17] | 赵玉, 张永福, 卜祥, 等. 2000—2020年新疆土地利用变化及其对生态系统服务价值的影响[J]. 天津师范大学学报(自然科学版), 2023, 43(6): 53-60. |
| [Zhao Yu, Zhang Yongfu, Bu Xiang, et al. Land use change and its impact on ecosystem service value in Xinjiang from 2000 to 2020[J]. Journal of Tianjin Normal University (Natural Science Edition), 2023, 43(6): 53-60.] | |
| [18] | Guan J, Yao J, Li M, et al. Assessing the spatiotemporal evolution of anthropogenic impacts on remotely sensed vegetation dynamics in Xinjiang, China[J]. Remote Sensing, 2021, 13(22): 4651. |
| [19] |
Yang Y, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021 |
| [20] | 傅楷翔, 贾国栋, 余新晓, 等. 耦合PLUS-InVEST-Geodector模型的新疆地区碳储量时空变化及驱动机制分析[J]. 环境科学, 2024, 45(9): 5416-5430. |
| [Fu Kaixiang, Jia Guodong, Yu Xinxiao, et al. Analysis of temporal and spatial carbon stock changes and driving mechanism in Xinjiang region by coupled PLUS-InVEST-Geodector model[J]. Environmental Science, 2024, 45(9): 5416-5430.] | |
| [21] | 韩敏, 徐长春, 隆云霞, 等. 西北干旱区不同土地利用情景下的碳储量及碳源/汇变化模拟与预估[J]. 水土保持通报, 2022, 42(3): 335-344. |
| [Han Min, Xu Changchun, Long Yunxia, et al. Simulation and prediction of changes in carbon storage and carbon source/sink under different land use scenarios in arid region of Northwest China[J]. Bulletin of Soil and Water Conservation, 2022, 42(3): 335-344.] | |
| [22] | Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404: 858-861. |
| [23] | Alam S A, Starr M, Clark B J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study[J]. Journal of Arid Environments, 2013, 89: 67-76. |
| [24] | Zhu L, Song R, Sun S, et al. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050[J]. Ecological Indicators, 2022, 142: 109178. |
| [25] | 胡佶熹, 勒先文, 王卫林, 等. 基于PLUS-InVEST模型的江西省生态系统碳储量时空演变与预测[J]. 环境科学, 2024, 45(6): 3284-3296. |
| [Hu Jixi, Le Xianwen, Wang Weilin, et al. Temporal and spatial evolution and Prediction of ecosystem carbon storage in Jiangxi province based on PLUS-InVEST model[J]. Environmental Science, 2024, 45(6): 3284-3296.] | |
| [26] | 杨顺法, 昝梅, 袁瑞联, 等. 基于PLUS与InVEST模型的新疆碳储量变化及预测[J]. 环境科学, 2025, 46(1): 378-387. |
| [Yang Shunfa, Zan Mei, Yuan Ruilian, et al. Carbon stock changes and forecasting in Xinjiang based on PLUS and InVEST model approach[J]. Environmental Science, 2025, 46(1): 378-387.] | |
| [27] |
张顺鑫, 吴子豪, 闫庆武, 等. 基于PLUS-InVEST模型的天山北坡生态系统碳储量时空变化与预测[J]. 干旱区研究, 2024, 41(7): 1228-1237.
doi: 10.13866/j.azr.2024.07.14 |
|
[Zhang Shunxin, Wu Zihao, Yan Qingwu, et al. Spatiotemporal changes in the ecosystem carbon storage on the northern slope of the Tianshan Mountains and simulations based on the PLUS-InVEST model[J]. Arid Zone Research, 2024, 41(7): 1228-1237.]
doi: 10.13866/j.azr.2024.07.14 |
|
| [28] |
Anderegg W R L, Schwalm C, Biondi F, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models[J]. Science, 2015, 349(6247): 528-532.
doi: 10.1126/science.aab1833 pmid: 26228147 |
| [29] | 王海波, 孙娟, 玉永雄. 生物入侵对生物多样性以及草地农业生态系统的影响[J]. 草业科学, 2007(1): 68-72. |
| [Wang Haibo, Sun Juan, Yu Yongxiong. The impact of biological invasion on biodiversity and grassland agroecosystems[J]. Grassland Science, 2007(1): 68-72.] | |
| [30] | 李斯佳, 王冰, 王子昊, 等. 基于PLUS-InVEST模型的大兴安岭农林交错区碳储量时空变化及驱动力分析[J]. 农业工程学报, 2024, 40(21): 232-241. |
| [Li Sijia, Wang Bing, Wang Zihao, et al. Spatiotemporal changes and driving forces of carbon storage in the forest-agricultural interlacing zone of Greater Khingan Mountains using PLUS-InVEST model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(21): 232-241.] | |
| [31] | Zhao G, Cong M, Zhang Z, et al. Microaggregates regulate the soil organic carbon sequestration and carbon flow of windproof sand fixation forests in desert ecosystems[J]. Catena, 2024, 245: 108320. |
| [32] | Amar G, Mamtimin A, Wang Y, et al. Factors controlling and variations of CO2 fluxes during the growing season in Gurbantunggut Desert[J]. Ecological Indicators, 2023, 154: 110708. |
| [33] | Yang F, Huang J, Zheng X, et al. Evaluation of carbon sink in the Taklimakan Desert based on correction of abnormal negative CO2 flux of IRGASON[J]. Science of the Total Environment, 2022, 838: 155988. |
| [1] | 刘雯惠, 侯迎, 马小娟. 六盘山区生态系统产水服务供需关系的多维时空分异[J]. 干旱区研究, 2025, 42(9): 1587-1598. |
| [2] | 刘小明, 郑世妍, 乔占明. 基于PLUS-InVEST模型的三江源土地利用变化动态模拟与生境质量[J]. 干旱区研究, 2025, 42(6): 1080-1092. |
| [3] | 李治明, 张国飞, 邢捷, 杨磊, 王卫东, 曹娟. 基于MSPA-InVEST模型的陇南市生态安全格局时空演变[J]. 干旱区研究, 2025, 42(6): 1103-1113. |
| [4] | 吴朝巧, 林菲, 牛俊杰, 耿甜伟. 山西中部城市群生态系统服务对土地利用格局变化的响应[J]. 干旱区研究, 2024, 41(7): 1153-1166. |
| [5] | 李冰洁, 范志韬, 曲芷程, 姚顺予, 宿夏姝, 刘东伟, 王立新. 基于InVEST-PLUS模型的黄河流域内蒙古段生态系统碳储量评价及预测[J]. 干旱区研究, 2024, 41(7): 1217-1227. |
| [6] | 张顺鑫, 吴子豪, 闫庆武, 李桂娥, 牟守国. 基于PLUS-InVEST模型的天山北坡生态系统碳储量时空变化与预测[J]. 干旱区研究, 2024, 41(7): 1228-1237. |
| [7] | 李沛尧, 王新军, 许世贤, 高胜寒, 薛智暄, 衡瑞. 基于PLUS土地利用模拟的阿克苏河流域NEP时空格局研究[J]. 干旱区研究, 2024, 41(6): 1059-1068. |
| [8] | 姚小晨, 高凡, 韩方红, 何兵. 2000—2020年阿克苏河流域土地利用强度变化及其对蒸散发的影响[J]. 干旱区研究, 2024, 41(6): 951-963. |
| [9] | 高雅玉, 宋玉, 赵廷红, 高金芳, 何文博, 李泽霞. 马莲河下游产水量时空演变特征[J]. 干旱区研究, 2024, 41(5): 776-787. |
| [10] | 程晓瑜, 吕洁华. 塔里木河流域碳储量的气候影响机制及地形分异下的归因[J]. 干旱区研究, 2024, 41(5): 865-875. |
| [11] | 刘如龙, 赵媛媛, 陈国清, 迟文峰, 刘正佳. 内蒙古黄河流域1990—2020年生境质量评估[J]. 干旱区研究, 2024, 41(4): 674-683. |
| [12] | 李佳珂, 邵战林. 基于PLUS和InVEST模型的乌鲁木齐市碳储量时空演变与预测[J]. 干旱区研究, 2024, 41(3): 499-508. |
| [13] | 严莉, 曹广超, 康利刚, 刘梦琳, 叶得力. 基于InVEST模型的共和县生境质量时空变化及驱动因素[J]. 干旱区研究, 2024, 41(2): 314-325. |
| [14] | 王洋, 冯卓亚, 许丽, 高文信. 塔里木河流域生境质量与土地利用变化响应及驱动力[J]. 干旱区研究, 2024, 41(12): 2132-2142. |
| [15] | 苏泽琛, 邵战林. 干旱区土地利用变化对耕地空间的影响及预测——以昌吉市为例[J]. 干旱区研究, 2024, 41(11): 1936-1945. |
|
||