刺槐,人工林,土壤水分,水文物理性质,坡位,动态变化,甘肃 ," /> 刺槐,人工林,土壤水分,水文物理性质,坡位,动态变化,甘肃 ,"/> <p class="MsoNormal"> <b>甘肃泾川中沟小流域不同坡位刺槐人工林土壤水分特征</b>

干旱区研究 ›› 2019, Vol. 36 ›› Issue (5): 1300-1308.doi: 10.13866/j.azr.2019.05.28

• 其他 • 上一篇    下一篇

甘肃泾川中沟小流域不同坡位刺槐人工林土壤水分特征

张晓梅1,邸利1,史再军2,费俊娥1,王正安3   

  1. 1.甘肃农业大学资源与环境学院,甘肃 兰州 730070; 2. 泾川县官山林场,甘肃 泾川744306; 3.宁夏农林科学院固原分院,宁夏 固原 756000
  • 收稿日期:2019-12-20 修回日期:2019-03-04 出版日期:2019-09-15 发布日期:2019-09-11
  • 通讯作者: 邸利 E-mail:dili@gsau.edu.cn
  • 作者简介:张晓梅(1991-),女,硕士研究生,主要从事森林生态水文方向研究.E-mail: 2248530337@qq.com
  • 基金资助:
    国家自然科学基金项目( 31660235,41461112)资助

Soil Moisture Content under Artificial Robinnia pseudoacacia Forest at Different Slope Positions in the Zhonggou Minor Basin, Jingchuan County, Gansu Province

ZHANG Xiao-mei1, DI Li1, SHI Zai-jun2, FEI Jun-e1, WANG Zheng-an3   

  1. 1.College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070,Gansu,China;

    2. Guanshan Forest Farm in Jingchuan County, Pingliang 744306,Gansu,China;

    3.Guyuan Branch of Ningxia Academy of Agriculture and Forestry, Guyuan 756000, Ningxia,China

  • Received:2019-12-20 Revised:2019-03-04 Online:2019-09-15 Published:2019-09-11

摘要:

以甘肃泾川中沟小流域不同坡位刺槐人工林为研究对象,采用环刀法测定人工刺槐林土壤水文物理性质,采用烘干法测定土壤水分。方差分析表明:不同坡位土壤物理性质存在显著差异,0~100 cm土层的土壤容重为:塬面刺槐林(上)(1.24 g·cm3)>塬面刺槐林(下)(1.20 g·cm3)>沟台刺槐林(1.18 g·cm3)>墚坡刺槐林(1.16 g·cm3)。土壤总孔隙度为:墚坡刺槐林(51.99%)>沟台刺槐林(51.31%)>塬面刺槐林(下)(50.52%)>塬面刺槐林(上)(49.33%),墚坡刺槐林饱和持水量与非毛管持水量均最大,沟台刺槐林与塬面刺槐林(下)次之,塬面刺槐林(上)最小。各林地土壤水分变化季节性差异明显,可分为土壤水分消耗期(5-6月)、补给期(7月)、消退期(8-9月)。不同林地土壤含水量变异系数随土层深度加深表现为先增大后减小,土壤水分变异系数在40~80 cm处达到最大值(Cv>0.3)。表明塬面刺槐林(上)的土壤含水量最大,塬面刺槐林(下)与沟台刺槐林居中,墚坡刺槐林土壤水分最低。

关键词: 刺槐')">

刺槐, 人工林, 土壤水分, 水文物理性质, 坡位, 动态变化, 甘肃

Abstract:

The soil hydrophysical properties under the artificial Robinia pseudoacacia forests in different landforms in a minor drainage basin in Jingchuan County, Gansu Province were measured using the “ring knife” method, and the soil moisture content was also measured using the oven drying method. The soil bulk density in 0-100 cm soil layer under the R. pseudoacacia plantations at different slope positions was in an order of the R. pseudoacacia forest on the hill top (1.24 g·cm3) > R. pseudoacacia forest at the gully bottom (1.20 g·cm3) > R. pseudoacacia forest (1.18 g·cm3) > R. pseudoacacia forest on the hill slope (1.16 g·cm3). The total soil porosity was in an order of the R. pseudoacacia forest on the hill slope (51.99%) > R. pseudoacacia forest in the gully (51.31%) > R. pseudoacacia forest at the tableland bottom (50.52%) > R. pseudoacacia forest at the tableland top (49.33%). The saturation moisture capacity and non-capillary moisture capacity of soil under the R. pseudoacacia forest on the hill slope were both the highest, then those under the R. pseudoacacia forests in gully and at the tableland bottom, and they were the lowest under the R. pseudoacacia forest on the hill top. The seasonal variation of soil moisture content under the forest was obvious, which could be divided into the soil moisture consumption period (from May to June), soil moisture supply period (July) and soil moisture reduction period (from August to September). The variable coefficient of soil moisture content under the forests in different landforms was increased at first and then decreased with the increase of soil depth, and it reached the highest value (Cv>0.3) in 40-80 cm soil layer. The results revealed that the soil moisture content was the highest under the R. pseudoacacia forest on the hill top, and then under the forests at the gully bottom and the on the gully tableland, and it was the lowest on the hill slope.

Key words: Robinia pseudoacacia, plantation, soil moisture content, hydrophysical property, slope; dynamic change, Gansu Province