Arid Zone Research ›› 2022, Vol. 39 ›› Issue (4): 1090-1101.doi: 10.13866/j.azr.2022.04.10
• Water Resources and Utilization • Previous Articles Next Articles
LUO Chengyan1(),CHEN Fulong1(),HE Chaofei1,LONG Aihua1,2,QIAO Changlu1
Received:
2022-01-04
Revised:
2022-03-24
Online:
2022-07-15
Published:
2022-09-26
Contact:
Fulong CHEN
E-mail:2861413917@qq.com;cfl103@shzu.edu.cn
LUO Chengyan,CHEN Fulong,HE Chaofei,LONG Aihua,QIAO Changlu. Applicability of CMADS in runoff simulation of Yulong Kashi River[J].Arid Zone Research, 2022, 39(4): 1090-1101.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data types and sources"
数据名称 | 数据描述 | 数据来源 |
---|---|---|
气象数据 | 空间分辨率0.25°,时间为2008—2016年逐日 | 国家青藏高原科学数据中心,数据版本CMADS V1.1 |
水文数据 | 1969—2016年逐月径流 | 和田地区水利局,玉龙喀什河出山口同古孜洛克水文站 |
DEM数字高 程数据 | 空间分辨率30 m,地理坐标为WGS_1984,投影坐标为WGS_1984_World_Mercator | 地理空间数据云ASTER GDEM 30 m分辨率数字高程数据 |
土地利用数据 | 空间分辨率30 m,时间为2010年,投影坐标为WGS_1984_World_Mercator | 中国科学院资源环境科学数据中心 |
土壤数据 | 空间分辨率1 km,时间为2008年,投影坐标为WGS_1984_World_Mercator | 世界粮农组织提供世界土壤数据库(HWSD)中的中国土壤数据集(V1.2) |
Tab. 2
Accuracy evaluation formula"
名称 | 公式 | 范围 | 最优值 |
---|---|---|---|
相关系数(Correlation Coefficient, CC) | | [-1,1] | 1 |
均方根误差(Root Mean Square Error,RMSE) | | [0,∞] | 0 |
相对误差(Relative Error, RE) | | [-∞,∞] | 0 |
探测率(Probability of Detection, POD) | | [0,1] | 1 |
误报率(False Alarm Ratio, FAR) | | [0,1] | 0 |
临界成功指数(Critical Success Index, CSI) | | [0,1] | 1 |
纳什效率系数(Nash-Sutcliffe Efficiency Coefficient,NSE) | | [0,1] | 1 |
模型决定系数(Coefficient of Determination, R2) | | [0,1] | 1 |
Tab. 3
Parameter calibration results"
序号 | 调参方式__参数 | 名称 | 调参区间 | 最优值 | t-Stat | P-Value |
---|---|---|---|---|---|---|
1 | V__SMFMX | 最大融雪因子/(mm·℃-1·d-1) | [1.5,6.9] | 5.1345 | 54.7774 | 0.0000 |
2 | R__ALPHA_BF | 基流α因子/d | [0,1] | 0.1100 | -25.2418 | 0.0000 |
3 | V__SMTMP | 融雪基温/℃ | [-5,10] | 0.5000 | 8.4776 | 0.0000 |
4 | V__GW_DELAY | 地下水延迟时间/d | [0,500] | 329.000 | 4.8323 | 0.0000 |
5 | A__TLAPS | 气温直减率/(℃·km-1) | [-1.5,0] | -1.5320 | 2.4267 | 0.0154 |
6 | R__OV_N | 坡面漫流的曼宁系数 | [-0.2,0.2] | -0.0090 | 2.1911 | 0.0286 |
7 | R__CN2 | 初始SCS径流曲线数 | [-0.2,0.2] | -0.1000 | -1.5313 | 0.1259 |
8 | R__SOL_BD | 土壤湿容重/(g·cm-3) | [-0.2,0.2] | -0.0278 | -1.4564 | 0.1455 |
9 | R__SOL_K | 饱和渗透系数/(mm·h-1) | [-0.5,0.5] | 0.3000 | -1.2161 | 0.2241 |
10 | A__PLAPS | 降水直减率/(mm·km-1) | [0,2] | 1.6500 | -1.1239 | 0.2612 |
11 | V__RCHRG_DP | 深层含水层的渗透系数 | [0,1] | 0.2480 | 0.7908 | 0.4292 |
12 | V__SFTMP | 降雪气温/℃ | [-5,5] | -0.0216 | 0.6371 | 0.5242 |
13 | R__HRU_SLP | 平均比降 | [-0.2,0.2] | 0.0587 | -0.5362 | 0.5919 |
14 | R__SLSUBBSN | 平均坡长/m | [-0.1,0.1] | 0.0097 | 0.4710 | 0.6377 |
15 | V__GWQMN | 发生回归流所需的浅层含水量的水位阀值/mm | [0,5000] | 4750.0 | 0.4302 | 0.6671 |
16 | V__SMFMN | 最小融雪因子/(mm·℃-1·d-1) | [1.5,6.9] | 4.4167 | -0.2597 | 0.7951 |
17 | V__ESCO | 土壤蒸发补偿因子 | [0,1] | 0.4100 | 0.1570 | 0.8753 |
[1] | 吴益, 程维明, 任立良, 等. 新疆和田河流域河川径流时序特征分析[J]. 自然资源学报, 2006, 21(5): 375-381. |
[Wu Yi, Cheng Weiming, Ren Liliang, et al. Analysis on the characteristics of annual runoff in Hotan catchment[J]. Journal of Natural Resource, 2006, 21(5): 375-381.] | |
[2] |
Yu Z X, Man X L, Duan L L, et al. Assessments of impacts of climate and forest change on water resources using SWAT model in a subboreal watershed in northern Da Hinggan Mountains[J]. Water, 2020, 12(6): 1-15.
doi: 10.3390/w12010001 |
[3] | 魏冲, 胡彩虹, 陈杰, 等. SWAT模型基于不同坡度林地径流调节作用的实现与应用[J]. 水力发电学报, 2014, 33(3): 98-105, 111. |
[Wei Chong, Hu Caihong, Chen Jie, et al. Application of SWAT model and realization of hydrological adjusting function of forests on different slopes[J]. Journal of Hydroelectric Engineering, 2014, 33(3): 98-1051, 111.] | |
[4] | 金鑫, 金彦香, 杨登兴. 基于LU-SWAT模型的土地利用/覆被变化对水文过程的影响研究——以黑河上游为例[J]. 灌溉排水学报, 2019, 38(5): 114-121. |
[Jin Xin, Jin Yanxiang, Yang Dengxing. Using LU-SWAT Model to analyze the response of hydrological processes to land use/coverage with application to an upper watershed in Heihe Basin[J]. Journal of Irrigation and Drainage, 2019, 38(5): 114-121.] | |
[5] | 孟现勇, 王浩, 雷晓辉, 等. 基于CMDAS驱动SWAT模式的精博河流域水文相关分量模拟、验证及分析[J]. 生态学报, 2017, 37(21): 7114-7127. |
[Meng Xianyong, Wang Hao, Lei Xiaohui. et al. Simulation, validation, and analysis of the hydrological components of Jing and Bo River Basin based on the SWAT model driven by CMADS[J]. Acta Ecologica Sinica, 2017, 37(21): 7114-7127.] | |
[6] |
Liu J, Shangguan D H, Liu S Y, et al. Evaluation and hydrological simulation of CMADS and CFSR reanalysis datasets in the Qinghai-Tibet Plateau[J]. Water, 2018, 10(4): 1-18.
doi: 10.3390/w10020001 |
[7] |
Zhang L M, Meng X Y, Wang H, et al. Investigate the applicability of CMADS and CFSR reanalysis in Northeast China[J]. Water, 2020, 12(4): 1-18.
doi: 10.3390/w12010001 |
[8] |
文小航, 吕世华, 董文杰, 等. 西北干旱区绿洲—戈壁资料同化数据集的建立与分析[J]. 高原气象, 2014, 33(1): 66-79.
doi: 10.7522/j.issn.1000-0534.2013.00073 |
[Wen Xiaohang, Lyu Shihua, Dong Wenjie, et al. Establish mentand analysis of assimilation dataset of Oasis-Gobi system over an arid region in northwestern China[J]. Plateau Meteorology, 2014, 33(1): 66-79.]
doi: 10.7522/j.issn.1000-0534.2013.00073 |
|
[9] |
Mokhtari A, Noory H, Vazifedoust M. Performance of different surface incoming solar radiation models and their impacts on reference evapotranspiration[J]. Water Resources Management, 2018, 32(9): 3053-3070.
doi: 10.1007/s11269-018-1974-9 |
[10] |
赵采玲, 李耀辉, 柳媛普, 等. 中国西北地区大气边界层高度变化特征——基于探空资料与ERA-Interim再分析资料[J]. 高原气象, 2019, 38(6): 1181-1193.
doi: 10.7522/j.issn.1000-0534.2018.00152 |
[Zhao Cailing, Li Yaohui, Liu Yuanpu, et al. The variation characteristics of planetary boundary layer height in Northwest China: Based on radiosonde and ERA-Interim reanalysis data[J]. Plateau Meteorology, 2019, 38(6): 1181-1193.]
doi: 10.7522/j.issn.1000-0534.2018.00152 |
|
[11] | 李锐, 李文卓, 傅云飞, 等. 青藏高原ERA40和NCEP大气非绝热加热的不确定性[J]. 科学通报, 2017, 62(5): 420-431. |
[Li Rui, Li Wenzhuo, Fu Yunfei, et al. The uncertainties of residual diagnosis of atmospheric diabatic heating from ERA40 and NCEP reanalysis over Tibetan Plateau[J] Chinese Science Bulletin, 2017, 62(5): 420-431.] | |
[12] | 孟现勇, 师春香, 刘时银, 等. CMADS数据集及其在流域水文模型中的驱动作用——以黑河流域为例[J]. 人民珠江, 2016, 37(7): 1-19. |
[Meng Xianyong, Shi Chunxiang, Liu Shiyin, et al. CMADS datasets and its application in watershed hydrological simulation: A case study of the Heihe River Basin[J]. Pearl River, 2016, 37(7): 1-19.] | |
[13] | 张利敏, 王浩, 孟现勇. 基于CMADS驱动的SWAT模型在辽宁浑河流域的应用研究[J]. 华北水利水电大学学报(自然科学版), 2017, 38(5): 1-9. |
[Zhang Limin, Wang Hao, Meng Xianyong. Application of SWAT model driven by CMADS in Hunhe River Basin in Liaoning Province[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2017, 38(5): 1-9.] | |
[14] |
刘兆晨, 杨梅学, 万国宁, 等. 新型卫星降水产品在黄河源区的适用性分析——以SWAT模型为例[J]. 高原气象, 2021, 40(2): 403-410.
doi: 10.7522/j.issn.1000-0534.2020.00024 |
[Liu Zhaochen, Yang Meixue, Wan Guoning, et al. Applicability of new satellites precipitation products in source region of Yellow River: Using SWAT model as an example[J]. Plateau Meteorology, 2021, 40(2): 403-410.]
doi: 10.7522/j.issn.1000-0534.2020.00024 |
|
[15] | 刘晓笛. 基于SWAT模型的和田河上游气候和土地利用变化的水文效应模拟[D]. 曲阜: 曲阜师范大学, 2019. |
[Liu Xiaodi. Hydrological Effects of Climate and Land Use Change in the Upper Reaches of Hotan River Based on SWAT Model[D]. Qufu: Qufu Normal University, 2019.] | |
[16] | 余其鹰, 张江辉, 白云岗, 等. 1957—2018年和田河源流径流演变特征[J]. 干旱区研究, 2021, 38(2): 494-503. |
[Yu Qiying, Zhang Jianghui, Bai Yungang, et al. Evolution characteristics of the headstream of the Hotan River headstream from 1957 to 2018[J]. Arid Zone Research, 2021, 38(2): 494-503.] | |
[17] | 黄星, 陈伏龙, 赵琪, 等. 新疆和田河径流丰枯评价及组合分析[J]. 干旱区研究, 2021, 38(6): 1570-1578. |
[Huang Xing, Chen Fulong, Zhao Qi, et al. Evaluation and combination analysis of runoff in Hotan River, Xinjiang[J]. Arid Zone Research, 2021, 38(6): 1570-1578.] | |
[18] | 尹如洪. 和田河流域水资源规划研究[D]. 西安: 西安理工大学, 2002. |
[Yin Ruhong. Study on Water Resources Planning of the Hotan River[D]. Xi’an: Xi’an University of Technology, 2002.] | |
[19] | 刘启宁, 辛卓航, 韩建旭, 等. 变化环境下东北半干旱地区径流演变规律分析——以洮儿河流域为例[J]. 水力发电学报, 2020, 39(5): 51-63. |
[Liu Qining, Xin Zhuohang, Han Jianxu, et al. Analysis on evolving trends of streamflow in the semi-arid region in Northeast China under changing environment: A case study of Taoer River basin[J]. Journal of Hydroelectric Engineering, 2020, 39(5): 51-63.] | |
[20] |
孟现勇, 王浩. SWAT模型中国大气同化驱动数据集(CMADS V1. 1)(2008-2016)[DB/OL]. 国家青藏高原科学数据中心, 2018. DOI: 10.3972/westdc.002.2016.db.CSTR:18046.11.westdc.002.2016.db.
doi: 10.3972/westdc.002.2016.db.CSTR:18046.11.westdc.002.2016.db |
[Meng Xianyong, Wang Hao. China Meteorological Assimilation Driving Datasets for the SWAT Model Version1. 1(2008-2016)[DB/OL]. National Tibetan Plateau Data Center, 2018. DOI: 10.3972/westdc.002.2016.db.CSTR:18046.11.westdc.002.2016.db.]
doi: 10.3972/westdc.002.2016.db.CSTR:18046.11.westdc.002.2016.db |
|
[21] | 屈吉鸿, 石红旺, 李志岩. 基于SWAT模型的青龙河流域气候变化径流响应研究[J]. 水力发电学报, 2015, 34(4): 8-15. |
[Qu Jihong, Shi Hongwang, Li Zhiyan. Runoff responses to climate change in Qinglong river watershed based on SWAT model[J]. Journal of Hydroelectric Engineering, 2015, 34(4): 8-15.] | |
[22] |
田晶, 郭生练, 刘德地, 等. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318.
doi: 10.11821/dlxb202011003 |
[Tian Jing, Guo Shenglian, Liu Dedi, et al. Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin[J]. Acta Geographica Sinica, 2020, 75(11): 2307-2318.]
doi: 10.11821/dlxb202011003 |
|
[23] | 王中根, 刘昌明, 黄友波. SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003, 22(1): 79-86. |
[Wang Zhonggen, Liu Changming, Huang Youbo. The theory of SWAT model and its application in Heihe Basin[J]. Progress in Geography, 2003, 22(1): 79-86.] | |
[24] | 庞靖鹏, 徐宗学, 刘昌明. SWAT模型研究应用进展[J]. 水土保持研究, 2007, 14(3): 31-35. |
[Pang Jingpeng, Xu Zongxue, Liu Changming. SWAT model application: State-of-the-art review[J]. Research of Soil and Water Conservation, 2007, 14(3): 31-35.] | |
[25] | 张银辉. SWAT模型及其应用研究进展[J]. 地理科学进展, 2005, 24(5): 121-130. |
[Zhang Yinhui. Development of study on model-SWAT and its application[J]. Progress in Geography, 2005, 24(5): 121-130.] | |
[26] | Yu J, Noh J, Cho Y. SWAT model calibration/validation using SWAT-CUP Ⅱ: Analysis for uncertainties of simulation run/iteration number[J]. Journal of Korea Water Resources Association, 2020, 53(5): 347-356. |
[27] |
Mamo K H M, Jain M K. Runoff and sediment modeling using SWAT in Gumera catchment, Ethiopia[J]. Open Journal of Modern Hydrology, 2013, 3(4): 196-205.
doi: 10.4236/ojmh.2013.34024 |
[28] |
Khalid K, Ali M F, Rahman N F A, et al. Sensitivity analysis in watershed model using SUFI-2 algorithm[J]. Procedia Engineering, 2016, 2(162): 441-447.
doi: 10.1016/j.proeng.2010.03.048 |
[29] |
Bo H J, Dong X H, Li Z H, et al. Analysis of water balance components and parameter uncertainties based on SWAT model with CMADS data and SUFI-2 algorithm in Huangbaihe River catchment, China[J]. Nature Environment and Pollution Technology, 2020, 19(2): 637-650.
doi: 10.46488/NEPT.2020.v19i02.018 |
[30] |
Abbaspour K C, Yang J, Maximov I, et al. Modelling of hydrology and water quality in the Pre-Alpine/Alpine thur watershed using SWAT[J]. Journal of Hydrology, 2007, 333(2-4): 413-430.
doi: 10.1016/j.jhydrol.2006.09.014 |
[31] | 阳宽达, 谢红霞, 隋兵, 等. 基于GIS的降雨空间插值研究——以湖南省为例[J]. 水土保持研究, 2020, 27(3): 134-138, 145. |
[Yang Kuanda, Xie Hongxia, Sui Bing, et al. Research on spatial interpolation of rainfall based on GIS: A case study of Hunan Province[J]. Research of Soil and Water Conservation, 2020, 27(3): 134-138, 145.] | |
[32] | 姜卉芳, 穆振侠. 高寒山区气温垂直分布的估测方法研究——以玛纳斯河为例[J]. 水资源与水工程学报, 2011, 22(3): 44-47. |
[Jiang Huifang, Mu Zhenxia. Research on estimating method on vertical distribution of air temperature at high and cold mountain area: Case of the Manas River[J]. Journal of Water Resources and Water Engineering, 2011, 22(3): 44-47.] | |
[33] | 荣易, 秦成新, 孙傅, 等. SWAT模型在我国流域水环境模拟应用中的评估验证过程评价[J]. 环境科学研究, 2020, 33(11): 2571-2580. |
[Rong Yi, Qin Chengxin, Sun Fu, et al. Assessment of evaluation process of SWAT model application in China[J]. Research of Environmental Sciences, 2020, 33(11): 2571-2580.] | |
[34] | 张玉娜. 基于SWAT模型的干旱区内陆河流域水资源敏感性分析[D]. 乌鲁木齐: 新疆大学, 2014. |
[Zhang Yu’na. Sensitivity Analysis of Water Resources in Inland River Basin in Arid Area Based on SWAT Model[D]. Urumqi: Xinjiang University, 2014.] | |
[35] | 尤扬, 李朋朋, 高云. 不同气候情景下和田河上游径流变化[J/OL]. 南水北调与水利科技(中英文): 1-14[2022-03-10]. http://kns.cnki.net/kcms/detail/13.1430.TV.20220222.1636.002.html. |
You Yang, Li Pengpeng, Gao Yun. Analysis of runoff changes in upper Hotan River under different climate scenarios[J/OL]. South-to-North Water Transfers and Water Science & Technology, 1-14[2022-03-10]. http://kns.cnki.net/kcms/detail/13.1430.TV.20220222.1636.002.html. ] | |
[36] | 罗开盛, 陶福禄. 基于SWAT的西北干旱区县域水文模拟——以临泽县为例[J]. 生态学报, 2018, 38(23): 8593-8603. |
[Luo Kaisheng, Tao Fulu. Hydrological modeling based on SWAT in arid Northwest China: A case study in Linze County[J] Acta Ecologica Sinica, 2018, 38(23): 8593-8603.] | |
[37] | 宋玉鑫, 左其亭, 马军霞. 基于SWAT模型的开都河流域水文干旱变化特征及驱动因子分析[J]. 干旱区研究, 2021, 38(3): 610-617. |
[Song Yuxin, Zuo Qiting, Ma Junxia. Variation and dynamic drivers of drought in Kaidu River Basin based on the SWAT model[J]. Arid Zone Research, 2021, 38(3): 610-617.] | |
[38] | 谭丽丽, 黄峰, 乔学瑾, 等. TRMM在海河流域南系的降水估算精度评价及其对SWAT模型的适用性[J]. 农业工程学报, 2020, 36(6): 132-141, 324. |
[Tan Lili, Huang Feng, Qiao Xuejin, et al. Evaluation of TRMM satellite-based rainfall data in southern Haihe River Basin and suitability for SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 132-141, 324.] | |
[39] | 莫跃爽, 索惠英, 焦树林, 等. 喀斯特地区降水量空间插值方法对比——以贵州省为例[J]. 水土保持研究, 2021, 28(1): 164-170. |
[Mo Yueshuang, Suo Huiying, Jiao Shulin, et al. Comparison of spatial interpolation methods of precipitation: A case of Karst Area in Guizhou Province[J]. Research of Soil and Water Conservation, 2021, 28(1): 164-170.] | |
[40] | 孙铭悦, 吕海深, 朱永华, 等. 2套气象数据在资料缺乏地区的适用性评估——以呼图壁河流域为例[J]. 干旱区研究, 2022, 39(1): 94-103. |
[Sun Mingyue, Lyu Haishen, Zhu Yonghua, et al. Applicability assessment of two meteorological datasets in areas lacking data with the Hutubi River Basin as an example[J]. Arid Zone Research, 2022, 39(1): 94-103.] | |
[41] | 祖拜代·木依布拉, 师庆东, 普拉提·莫合塔尔, 等. 基于SWAT模型的乌鲁木齐河上游土地利用和气候变化对径流的影响[J]. 生态学报, 2018, 38(14): 5149-5157. |
[Zubaida Muyibul, Shi Qindong, Polat Muhtar, et al. Land use and climate change effects on runoff in the upper Urumqi River watershed: A SWAT model based analysis[J]. Acta Ecologica Sinica, 2018, 38(14): 5149-5157.] |
|