Arid Zone Research ›› 2023, Vol. 40 ›› Issue (1): 39-50.doi: 10.13866/j.azr.2023.01.05
• Land and Water Resources • Previous Articles Next Articles
CHEN Hongguang1,2,3(),MENG Fanhao1,2,3(),SA Chula1,2,3,LUO Min1,2,3,WANG Mulan1,2,3,LIU Guixiang1,4
Received:
2022-07-15
Revised:
2022-08-21
Online:
2023-01-15
Published:
2023-02-24
CHEN Hongguang, MENG Fanhao, SA Chula, LUO Min, WANG Mulan, LIU Guixiang. Analysis of the characteristics of runoff evolution and its driving factors in a typical inland river basin in arid regions[J].Arid Zone Research, 2023, 40(1): 39-50.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Model simulation scenario settings"
情景 | 气象数据 | 土地利用/覆被数据 | 目的 |
---|---|---|---|
s1 | 1980—2000年 | 1980年 | 计算乌拉盖河流域突变年前后基准期和突变期气候变化与人类活动对径流贡献率 |
s2 | 2000—2020年 | 1980年 | |
s3 | 2000—2020年 | 2020年 | |
s4 | 1980—1990年 | 1980年 | 计算1980—1990年气候变化与人类活动对径流的贡献率 |
s5 | 1980—1990年 | 1990年 | |
s6 | 1990—2000年 | 1990年 | 计算1990—2000年气候变化与人类活动对径流的贡献率 |
s7 | 1990—2000年 | 2000年 | |
s8 | 2000—2010年 | 2000年 | 计算2000—2010年气候变化与人类活动对径流的贡献率 |
s9 | 2000—2010年 | 2010年 | |
s10 | 2010—2020年 | 2010年 | 计算2010—2020年气候变化与人类活动对径流的贡献率 |
s11 | 2010—2020年 | 2020年 |
Tab. 2
Parameter sensitivity analysis results"
序号 | 参数名称 | 参数含义 | 取值范围 | 最终取值 |
---|---|---|---|---|
1 | CN2 | SCS径流曲线系数 | 30~98 | 85.19 |
2 | ALPHA_BF | 基流消退系数/d | 0~1 | 0.11 |
3 | GW_DELAY | 地下水延迟系数/d | 0~500 | 4.36 |
4 | GWQMN | 浅地下水产流阈值/mm | 0~1000 | 104.25 |
5 | SFTMP | 降雪温度/℃ | -10~10 | -1.03 |
6 | SMTMP | 融雪基准温度/℃ | -10~10 | 2.83 |
7 | SMFMX | 最大积雪融化速率/(mm·℃-1) | -20~20 | 8.29 |
8 | SMFMN | 最小积雪融化速率/(mm·℃-1) | -20~20 | 2.26 |
9 | SNOCOVMX | 100%积雪覆盖时所对应的积雪含水量/mm | 0~500 | 161.40 |
10 | ESCO | 土壤层蒸发补偿系数 | 0~1 | 0.65 |
11 | EPCO | 植物吸收补偿因子 | 0~1 | 0.11 |
12 | SOL_K | 饱和水力传导系数/(mm·h-1) | 0~2000 | 57.90 |
13 | SOL_AWC | 土壤有效持水量/mm | 0~1 | 0.36 |
14 | SURLAG | 地表径流滞后时间 | 0~24 | 13.79 |
[1] | 高瑞忠, 白勇, 刘廷玺, 等. 内蒙古高原典型草原内陆河流域径流的时序演变特征[J]. 南水北调与水利科技, 2018, 16(3): 10-17. |
[Gao Ruizhong, Bai Yong, Liu Tingxi, et al. Evolution characteristics of runoff in the typical grassland inland river basin of Inner Mongolia Plateau[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(3): 10-17.] | |
[2] |
Luo M, Liu T, Meng F, et al. Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia[J]. International Journal of Climatology, 2019, 39(3): 1571-1588.
doi: 10.1002/joc.5901 |
[3] | 白勇, 高瑞忠, 王喜喜, 等. 内蒙古巴拉格尔河径流变化的驱动因素[J]. 干旱区研究, 2018, 35(2): 296-305. |
[Bai Yong, Gao Ruizhong, Wang Xixi, et al. Driving factors causing the change of runoff volume of the Balager River in Inner Mongolia[J]. Arid Zone Research, 2018, 35(2): 296-305.] | |
[4] | 叶培龙, 张强, 王莺. 1980—2018年黄河上游气候变化及其对生态植被和径流量的影响[J]. 大气科学学报, 2020, 6(43): 967-979. |
[Ye Peilong, Zhang Qiang, Wang Ying, et al. Climate change in the upper Yellow River and its impact on ecological vegetation and runoff from 1980-2018[J]. Journal of Atmospheric Sciences, 2020, 6(43): 967-979.] | |
[5] | 潘竟虎, 李真. 干旱内陆河流域生态系统服务空间权衡与协同作用分析[J]. 农业工程学报, 2017, 33(17): 280-289. |
[Pan Jinghu, Li Zhen. Analysis of trade-offs and synergies of ecosystem services in arid inland river basin[J]. Journal of Agricultural Engineering, 2017, 33(17): 280-289.] | |
[6] | 张阿龙, 高瑞忠, 刘廷玺, 等. 高原内陆河流域气候水文突变与生态演变规律——以内蒙古锡林河和巴拉格尔河流域为例[J]. 中国环境科学, 2019, 39(12): 5254-5263. |
[Zhang Along, Gao Ruizhong, Liu Tingxi, et al. Identification on hydrometeorology mutation characteristics and ecological evolution pattern of the plateau inland river basin: Taken Xilin River and Balager River of Inner Mongolia for instance[J]. China Environmental Science, 2019, 39(12): 5254-5263.] | |
[7] | 窦小东, 黄玮, 易琦, 等. LUCC及气候变化对龙川江流域径流的影响[J]. 生态环境学报, 2019, 28(1): 7-15. |
[Dou Xiaodong, Huang Wei, Yi Qi, et al. Effects of LUCC and climate change on the runoff in Longchuan River Watershed[J]. Ecology and Environmental Sciences, 2019, 28(1): 7-15.] | |
[8] | 王威娜, 高瑞忠, 王喜喜, 等. 锡林河流域径流变化规律及气候波动和人类活动影响的定量分析[J]. 水土保持研究, 2018, 25(2): 347-353. |
[Wang Weina, Gao Ruizhong, Wang Xixi, et al. Quantitative analysis of runoff variation as affected by climate variability and human activity in the Xilin River Basin[J]. Research of Soil and Water Conservation, 2018, 25(2): 347-353.] | |
[9] | 刘柏君, 周广钰, 雷晓辉, 等. 海流兔河基流特征及其对气候变化和人类活动的响应分析[J]. 水资源与水工程学报, 2015, 26(5): 56-61. |
[Liu Bojun, Zhou Guangyu, Lei Xiaohui, et al. Analysis of baseflow characteristics and its responses to climatic change and human activities in Hailiutu River basin[J]. Journal of Water Resources & Water Engineering, 2015, 26(5): 56-61.] | |
[10] | 刘酌希, 陈鑫, 管晓祥, 等. 变化环境下洮河流域径流变化归因[J]. 水土保持研究, 2020, 27(5): 87-92. |
[Liu Zhuoxi, Chen Xin, Guan Xiaoxiang, et al. Attribution of runoff change in Taohe River Basin under a changing environment[J]. Research of Soil and Water Conservation, 2020, 27(5): 87-92.] | |
[11] |
Aawar Taha, Khare Deepak. Assessment of climate change impacts on streamflow through hydrological model using SWAT model: A case study of Afghanistan[J]. Modeling Earth Systems and Environment, 2020, 6(3-4): 1427-1437.
doi: 10.1007/s40808-020-00759-0 |
[12] | 王淑芳. 内蒙古乌拉盖河流域近20年植被覆盖变化研究[D]. 呼和浩特: 内蒙古师范大学, 2013. |
[Wang Shufang. Reaserch on in Recent 20 Years of Vegetation Cover Change Inner Mongolia Ulgai River Basin[D]. Hohhot: Inner Mongolia Normal University, 2013.] | |
[13] | 高学磊, 布仁图雅. 乌拉盖近十五年生态状况评估及驱动因素分析[J]. 环境与发展, 2015, 27(2): 30-35. |
[Gao Xuelei, Burentuya. Ecological status evaluation and driving factors analysis of Wulagai over the past 15 years[J]. Environment and Development, 2015, 27(2): 30-35.] | |
[14] | 彭聚睿. 乌拉盖管理区经济发展对策研究[D]. 呼和浩特: 内蒙古师范大学, 2016. |
[Peng Jurui. Study on Measures of Economic Development for Wulagai Management District[D]. Hohhot: Inner Mongolia Normal University, 2016.] | |
[15] | 张义, 刘钟龄. 乌拉盖河及其主要支流的水资源评价与合理利用的探讨[J]. 干旱区资源与环境, 1999, 13(1): 55-65. |
[Zhang Yi, Liu Zhongling. Stady on water resources assessment and reasonable use of Wulagai river and its main tributary[J]. Journal of Arid Land Resources and Environment, 1999, 13(1): 55-65.] | |
[16] | 苏布达, 易津, 陈继群, 等. 内蒙古乌拉盖草原湿地中下游植被退化演替趋势分析[J]. 中国草地学报, 2011, 33(3): 73-78. |
[Su Buda, Yi Jin, Chen Jiqun, et al. Analysis of vegetation degeneration succession trend in middle and lower reaches of Wulagai Wetland of Inner Mongolia[J]. Chinese Journal of Grassland, 2011, 33(3): 73-78.] | |
[17] | 张田田, 陈有超, 李潜, 等. 土地利用变化对丹江流域径流和泥沙时空格局的影响[J]. 长江流域资源与环境, 2022, 31(8): 1797-1811. |
[Zhang Tiantian, Chen Youchao, Li Qian, et al. Effect of land-use change on the spatio-temporal patterns of runoff and sediment in the Danjiang River Basin[J]. Resources and Environment in the Yangtze Basin, 2022, 31(8): 1797-1811.] | |
[18] | 张艳霞, 于瑞宏, 薛浩, 等. 锡林河流域径流量变化对气候变化与人类活动的响应[J]. 干旱区研究, 2019, 36(1): 67-76. |
[Zhang Yanxia, Yu Ruihong, Xue Hao, et al. Response of runoff volume change to climate change and human activities in the Xilin River Basin[J]. Arid Zone Research, 2019, 36(1): 67-76.] | |
[19] |
田晶, 郭生练, 刘德地, 等. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318.
doi: 10.11821/dlxb202011003 |
[Tian Jing, Guo Shenglian, Liu Dedi, et al. Impacts of climate and land use/cover changes on runoff in the Hanjiang River Basin[J]. Journal of Geographical, 2020, 75(11): 2307-2318.]
doi: 10.11821/dlxb202011003 |
|
[20] | 张连义, 刘爱军, 邢旗, 等. 乌拉盖湿地的生态环境现状及可持续发展对策研究[J]. 科学管理研究, 2005, 23(2): 117-120. |
[Zhang Lianyi, Liu Aijun, Xing Qi, et al. Current stiuation sustainable utilization and developing countermeasure of Wetland Resources in Wulagai[J]. Scientific Management Research, 2005, 23(2): 117-120.] | |
[21] | 保广裕, 乜虹, 戴升, 等. 黄河上游河源区不同量级降水对径流变化的影响[J]. 干旱区研究, 2021, 38(3): 704-713. |
[Bao Guangyu, Mie hong, Dai sheng, et al. Research on effects of different precipitation magnitudes on runoff changes in the headwater region of the upper Yellow River[J]. Arid Zone Research, 2021, 38(3): 704-713.] | |
[22] |
Duan Y, Meng F, Liu T, et al. Sub-daily simulation of mountain flood processes based on the modified soil water assessment tool (SWAT) model[J]. International Journal of Environmental Research and Public Health, 2019, 16(17): 3118.
doi: 10.3390/ijerph16173118 |
[23] |
Luo M, Liu T, Meng F, et al. Identifying climate change impacts on water resources in Xinjiang, China[J]. Science of The Total Environment, 2019, 676: 613-626.
doi: 10.1016/j.scitotenv.2019.04.297 |
[24] | 宋玉鑫, 左其亭, 马军霞. 基于SWAT模型的开都河流域水文干旱变化特征及驱动因子分析[J]. 干旱区研究, 2021, 38(3): 610-617. |
[Song Yuxin, Zuo Qiting, Ma Junxia, et al. Variation characteristics and dynamic drivers of drought in Kaidu River Basin based on SWAT model[J]. Arid Zone Research, 2021, 38(3): 610-617.] | |
[25] | 安晨, 方海燕. 基于SWAT模型的妫水河流域径流空间分布特征[J]. 水文, 2021, 41(4): 81-87. |
[An Chen, Fang Haiyan. Spatial distribution characteristics of runoff in Guishui River Basin based on SWAT model[J]. Journal of China Hydrology, 2021, 41(4): 81-87.] | |
[26] | 霍军军, 伊明启, 王静, 等. 拉萨河流域径流对土地利用和气候变化的响应分析[J]. 长江科学院院报, 2021, 38(10): 33-39. |
[Huo Junjun, Yi Mingqi, Wang Jing, et al. Response of runoff in Lhasa River Basin to land use and climate change[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 33-39.] | |
[27] | 杨立哲. 锡林河近50 a径流变化特征及其影响因素分析[J]. 草业科学, 2015, 32(3): 303-310. |
[Yang Lizhe. Analysis of runoff variations and impact factors in Xilinhe River Basin in recent 50 years[J]. Pratacultural Science, 2015, 32(3): 303-310.] | |
[28] | 窦小东, 彭启洋, 张万诚, 等. 基于情景分析的LUCC和气候变化对南盘江流域径流的影响[J]. 灾害学, 2020, 35(1): 84-89. |
[Dou Xiaodong, Peng Qiyang, Zhang Wancheng, et al. Impacts of LUCC and climate change on runoff in the Nanpan River Basin based on scenario analysis[J]. Journal of Catastrophology, 2020, 35(1): 84-89.] | |
[29] | 陈盼盼. 近20年乌拉盖河流域植物群落演替和植被动态变化研究[D]. 呼和浩特: 内蒙古大学, 2019. |
[Chen Panpan. Study on Plant Community Succession and Vegetation Dynamics in the Wulagai Basin in the Past 20 Years[D]. Hohhot: Inner Mongolia University, 2019.] | |
[30] | 陈宽. 锡林郭勒盟植被覆盖度变化及影响因素分析[D]. 呼和浩特: 内蒙古大学, 2021. |
[Chen Kuan. Analysis on the Change of Vegetation Coverage and its Influencing Factors in Xilingol League[D]. Hohhot: Inner Mongolia University, 2021.] | |
[31] | 刘亚红, 石磊, 常虹, 等. 锡林郭勒盟生态系统格局演变及驱动因素分析[J]. 草业学报, 2021, 30(12): 17-26. |
[Liu Yahong, Shi Lei, Chang Hong, et al. Analysis of driving factors that influence the pattern and quality of the ecosystem in Xilingol League[J]. Acta Pratacul Turae Sinice, 2021, 30(12): 17-26.] |
[1] | LI Yuhang, YU Wenxue, YANG Yongjun, ZHU Yanfeng, MA Jing, CHEN Fu. Spatio-temporal variation and attribution identification of natural runoff in the northern slope economic belt of Tianshan Mountains during the past 60 years [J]. Arid Zone Research, 2024, 41(9): 1446-1455. |
[2] | LYU Zhuangzhuang, QIAO Qingqing, DONG Sunyi, WANG Dong. Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming [J]. Arid Zone Research, 2024, 41(8): 1309-1322. |
[3] | ZHOU Jie, WANG Xuhu, DU Weibo, ZHOU Xiaolei, YANG Jie, ZAHNG Xiaowei. Prediction of potential distribution area of Picea schrenkiana under the background of climate change [J]. Arid Zone Research, 2024, 41(7): 1167-1176. |
[4] | LIANG Shuanghe, NIU Zuirong, JIA Ling. Analysis of runoff changes and attribution in the main stream of Zuli River in the past 65 years [J]. Arid Zone Research, 2024, 41(6): 928-939. |
[5] | TANG Kexin, GUO Jianbin, HE Liang, CHEN Lin, WAN Long. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands [J]. Arid Zone Research, 2024, 41(6): 964-973. |
[6] | PEI Zhilin, CAO Xiaojuan, WANG Dong, LI Di, WANG Xin, BAI Aiyuan. Spatiotemporal variation in vegetation coverage in Inner Mongolia and its response to human activities [J]. Arid Zone Research, 2024, 41(4): 629-638. |
[7] | WANG Pingshun, MIAO Xinyue, YAN Yaping, DONG Shengwang, DONG Shaogang. Hydrochemical characteristics and genesis of groundwater in the Yimin Basin, Inner Mongolia [J]. Arid Zone Research, 2024, 41(3): 411-420. |
[8] | YANG Fei, ZHANG Wentao, ZHANG Feimin, WANG Chenghai. Climate characteristics and variation in the Qilian Mountains from 1961 to 2022 [J]. Arid Zone Research, 2024, 41(10): 1627-1638. |
[9] | ZHANG Yin, SUN Congjian, LIU Geng, CHAO Jinlong, GENG Tianwei. Response of NDSI in the Tarim River Basin mountainous areas to climate change over the past 20 years [J]. Arid Zone Research, 2024, 41(10): 1639-1648. |
[10] | CHENG Qian, QI Yue, LIU Mingchun, ZHANG Peng, DING Wenkui, LI Xingyu, REN Liwen, YANG Hua. Characteristics of ecology and water resource changes in the Shiyang River Basin under the background of climate change and human activities [J]. Arid Zone Research, 2024, 41(10): 1672-1684. |
[11] | ZHAO Wenlong, LYU Haishen, ZHU Yonghua, LIU Han, WU Zhuojun. Simulation of rainfall and snowmelt runoff on the daily scale of the Kuwei Station in the Irtysh River [J]. Arid Zone Research, 2024, 41(10): 1685-1698. |
[12] | FAN Yuke, REN Ju, WANG Runlong, ZHOU Dongdong, PAN Zikai, ZHANG Xiaowei, ZHOU Xiaolei. Prediction of potential suitable distribution area of Pinus bungeana in China under the background of climate change [J]. Arid Zone Research, 2024, 41(10): 1719-1730. |
[13] | QI Ronglian, LI Qingbo, REN Jia, ZOU Miao, YANG Haopeng, WEI Yaofeng, TANG Qiong. Study on the characteristics of changes in vegetation cover and its driving forces in the Three-North Shelterbelt program regions: Taking Ningxia as example [J]. Arid Zone Research, 2024, 41(10): 1740-1752. |
[14] | ZHAO Yuqi, WEI Tianxing. Changes in vegetation cover and influencing factors in typical counties of the Loess Plateau from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(1): 147-156. |
[15] | HU Guanglu,TAO Hu,JIAO Jiao,BAI Yuanru,CHEN Haizhi,MA Jin. Runoff trend and attribution analysis of the Zhengyi Gorge in the middle reaches of the Heihe River [J]. Arid Zone Research, 2023, 40(9): 1414-1424. |
|