Arid Zone Research ›› 2023, Vol. 40 ›› Issue (1): 30-38.doi: 10.13866/j.azr.2023.01.04
• Weather and Climate • Previous Articles Next Articles
LI Erchen1(),ZHANG Yu1,YUAN Guanghui1,2()
Received:
2022-06-01
Revised:
2022-07-11
Online:
2023-01-15
Published:
2023-02-24
LI Erchen, ZHANG Yu, YUAN Guanghui. Quantify the impacts of four land cover types on surface temperature in the Heihe River Basin[J].Arid Zone Research, 2023, 40(1): 30-38.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 刘婉如, 陈春波, 罗格平, 等. 巴尔喀什湖流域土地利用/覆被变化过程与趋势[J]. 干旱区研究, 2021, 38(5): 1452-1463. |
[Liu Wanru, Chen Chunbo, Luo Geping, et al. Change processes and trends of land use/cover in the Balkhash Lake basin[J]. Arid Zone Research, 2021, 38(5): 1452-1463.] | |
[2] |
Lee X, Goulden M, Hollinger D, et al. Observed increase in local cooling effect of deforestation at higher latitudes[J]. Nature, 2011, 479(7373): 384-387.
doi: 10.1038/nature10588 |
[3] |
Juang J, Katul G, Siqueira M, et al. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States[J]. Geophysical Research Letters, 2007, 34(21): L21408. doi: 10.1029/2007GL031296.
doi: 10.1029/2007GL031296 |
[4] |
Zhang M, Lee X, Yu G, et al. Response of surface air temperature to small-scale land clearing across latitudes[J]. Environmental Research Letters, 2014, 9(3): 034002.
doi: 10.1088/1748-9326/9/3/034002 |
[5] |
Baldocchi D, Ma S. How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA[J]. Tellus B: Chemical and Physical Meteorology, 2013, 65(1): 19994.
doi: 10.3402/tellusb.v65i0.19994 |
[6] |
Betts A, Desjardins R, Worth D, et al. Impact of land use change on the diurnal cycle climate of the Canadian Prairies[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(21): 11996-12011.
doi: 10.1002/2013JD020717 |
[7] |
Zhao K, Jackson R. Biophysical forcings of land-use changes from potential forestry activities in North America[J]. Ecological Monographs, 2014, 84(2): 329-353.
doi: 10.1890/12-1705.1 |
[8] |
Broucke S, Luyssaert S, Davin E, et al. New insights in the capability of climate models to simulate the impact of LUC based on temperature decomposition of paired site observations[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(11): 5417-5436.
doi: 10.1002/2015JD023095 |
[9] |
Luyssaert S, Jammet M, Stoy P, et al. Land management and land-cover change have impacts of similar magnitude on surface temperature[J]. Nature Climate Change, 2014, 4: 389-393.
doi: 10.1038/nclimate2196 |
[10] |
Claussen M, Brovkin V, Ganopolski A. Biogeophysical versus biogeochemical feedbacks of large-scale land cover change[J]. Geophysical Research Letters, 2001, 28(6): 1011-1014.
doi: 10.1029/2000GL012471 |
[11] |
Bounoua L, DeFries R, Collatz G, et al. Effects of land cover conversion on surface climate[J]. Climate Change, 2002, 52: 29-64.
doi: 10.1023/A:1013051420309 |
[12] | Campra P, Garcia M, Canton Y, et al. Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D18): 1044. |
[13] | Kueppers L, Snyder M, Sloan L, et al. Irrigation cooling effect: Regional climate forcing by land-use change[J]. Geophysical Research Letters, 2007, 34(3): 407-423. |
[14] | Lobell D, Bala G, Duffy P. Biogeophysical impacts of cropland management changes on climate[J]. Geophysical Research Letters, 2006, 33(6): 272-288. |
[15] |
Zhang Y, Liu H, Foken T, et al. Coherent structures and flux contribution over an inhomogeneously irrigated cotton field[J]. Theoretical and Applied Climatology, 2011, 103: 119-131.
doi: 10.1007/s00704-010-0287-6 |
[16] |
Adegoke J, Roger S, Eastman J, et al. Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U. S. high plains[J]. Monthly Weather Review, 2003, 131(3): 556-564.
doi: 10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2 |
[17] |
Kalnay E, Cai M. Impact of urbanization and land use on climate change[J]. Nature, 2003, 423(6939): 528-531.
doi: 10.1038/nature01675 |
[18] | McCarthy M, Best M, Betts R. Climate change in cities due to global warming and urban effects[J]. Geophysical Research Letters, 2010, 37(9): 232-256. |
[19] |
Zhao L, Lee X, Smith R. et al. Strong contributions of local background climate to urban heat islands[J]. Nature, 2014, 511: 216-219. doi. org/10.1038/nature13462.
doi: org/10.1038/nature13462 |
[20] |
Basara J, Hall P, Schroeder A, et al. Diurnal cycle of the Oklahoma City urban heat island[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D20109.
doi: 10.1029/2008JD010311 |
[21] |
Lin S, Feng J, Wang J, et al. Modeling the contribution of long-term urbanization to temperature increase in three extensive urban agglomerations in China[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(4): 1683-1697.
doi: 10.1002/2015JD024227 |
[22] |
Burakowski E, Tawfik A, Ouimette A, et al. The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States[J]. Agricultural and Forest Meteorology, 2018, 249(28): 367-376.
doi: 10.1016/j.agrformet.2017.11.030 |
[23] |
Wang L, Lee X, Schultz N, et al. Response of surface temperature to afforestation in the Kubuqi Desert, Inner Mongolia[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 948-964.
doi: 10.1002/2017JD027522 |
[24] |
Zhao L, Lee X, Smith R, et al. Strong contributions of local background climate to urban heat islands[J]. Nature, 2014, 511(7508): 216-219.
doi: 10.1038/nature13462 |
[25] |
Chen L, Dirmeyer P A. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling[J]. Environmental Research Letters, 2016, 11(3): 034002. doi: 10.1088/1748-9326/11/3/034002.
doi: 10.1088/1748-9326/11/3/034002 |
[26] |
Davin E, Noblet-Ducoudré N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes[J]. Journal of Climate, 2010, 23(1): 97-112.
doi: 10.1175/2009JCLI3102.1 |
[27] |
Bonan G, Pollard D, Thompson S. Effects of boreal forest vegetation on global climate[J]. Nature, 1992, 359(6397): 716-718.
doi: 10.1038/359716a0 |
[28] |
Bright R, Davin E, O’Halloran T, et al. Local temperature response to land cover and management change driven by non-radiative processes[J]. Nature Climate Change, 2017, 7(4): 296-302.
doi: 10.1038/NCLIMATE3250 |
[29] |
Rigden A, Li D. Attribution of surface temperature anomalies induced by land use and land cover changes[J]. Geophysical Research Letters, 2017, 44(13): 6814-6822.
doi: 10.1002/2017GL073811 |
[30] |
Perugini L, Caporaso L, Marconi S, et al. Biophysical effects on temperature and precipitation due to land cover change[J]. Environmental Research Letters, 2017, 12(5): 053002.
doi: 10.1088/1748-9326/aa6b3f |
[31] | Peng S, Piao S, Zeng Z, et al. Afforestation in China cools local land surface temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2915-2919. |
[32] | 曹永香, 毛东雷, 薛杰, 等. 绿洲-沙漠过渡带植被覆盖动态变化及其驱动因素——以新疆策勒为例[J]. 干旱区研究, 2022, 39(2): 510-521. |
[Cao Yongxiang, Mao Donglei, Xue Jie, et al. Dynamic changes and driving factors of vegetation cover in the oasis-desert ecotone: A case study of Cele, Xinjiang[J]. Arid Zone Research, 2022, 39(2): 510-521.] | |
[33] |
Duveiller G, Hooker J, Cescatti A. The mark of vegetation change on Earth’s surface energy balance[J]. Nature Communication, 2018, 9: 679. doi: 10.1038/s41467-017-02810-8.
doi: 10.1038/s41467-017-02810-8 |
[34] |
Li Y, Zhao M, Motesharrei S. et al. Local cooling and warming effects of forests based on satellite observations[J]. Nature Communication, 2015, 6: 6603. doi: 10.1038/ncomms7603.
doi: 10.1038/ncomms7603 |
[35] |
Schultz N, Lawrence P, Lee X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation[J]. Journal of Geophysical Research Biogeosciences, 2017, 122(4): 903-917.
doi: 10.1002/2016JG003653 |
[36] |
Ge J, Guo W, Pitman A, et al. The nonradiative effect dominates local surface temperature change caused by afforestation in China[J]. Journal of Climate, 2019, 32(14): 4445-4471.
doi: 10.1175/JCLI-D-18-0772.1 |
[37] |
Williams M, Richardson A, Reichstein M, et al. Improving land surface models with FLUXNET data[J]. Biogeosciences, 2009, 6(7): 1341-1359.
doi: 10.5194/bg-6-1341-2009 |
[38] |
Xu Z, Liu S, Li X, et al. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(23): 13140-13157.
doi: 10.1002/2013JD020260 |
[39] | Li X, Cheng G, Liu S, et al. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of American Meteorological Society, 2013, 94(8): 1145-1160. |
[40] | Twine T, Kustas W, Norman J, et al. Correcting eddy-covariance flux underestimates over a grassland[J]. Agricultural and Forest Meteorology, 2000, 103(3): 279-300. |
[41] | 阳坤, 王介民. 一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J]. 中国科学: 地球科学, 2008, 38(2): 243-250. |
[Yang Kun, Wang Jiemin. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J]. Scientia Sinica(Terrae), 2008, 38(2): 243-250.] |
No related articles found! |
|