Arid Zone Research ›› 2021, Vol. 38 ›› Issue (5): 1199-1206.doi: 10.13866/j.azr.2021.05.01
• Weather and Climate • Next Articles
Received:
2021-02-25
Revised:
2021-06-28
Online:
2021-09-15
Published:
2021-09-24
XI Wentao,GAO Jing. Spatial heterogeneity of annual precipitation δ18O over the Tibetan Plateau based on the use of a geographical detector[J].Arid Zone Research, 2021, 38(5): 1199-1206.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Basic information of sampling sites over the Tibetan Plateau"
站点名称 | 纬度/(°) | 经度/(°) | 海拔/m | 降水量/mm | 年均温/℃ | 样本量(n) | 观测期 | 数据来源 |
---|---|---|---|---|---|---|---|---|
樟木 | 28.0 | 86.0 | 2239 | 1318 | 16.3 | 71 | 2005年 | TNIP |
玉树 | 33.0 | 97.0 | 3682 | 386 | 3.6 | 536 | 2000—2004年 | TNIP |
羊村 | 29.9 | 91.9 | 3500 | 296 | 10.4 | 57 | 2005年 | TNIP |
翁果 | 28.9 | 90.4 | 4500 | 253 | 4.0 | 90 | 2004—2007年 | TNIP |
沱沱河 | 34.2 | 92.4 | 4533 | 204 | -1.3 | 1022 | 1991—2005年 | TNIP |
塔什库尔干 | 37.8 | 75.3 | 3100 | 115 | 1.6 | 143 | 2003—2005年 | TNIP |
狮泉河 | 32.5 | 80.1 | 4278 | 82 | 0.5 | 96 | 1999—2002年 | TNIP |
奴下 | 29.5 | 94.6 | 2780 | 347 | 11.9 | 88 | 2005年 | TNIP |
聂拉木 | 28.2 | 86.0 | 3810 | 590 | 3.3 | 776 | 1996—2006年 | TNIP |
那曲 | 31.5 | 92.1 | 4508 | 500 | -0.3 | 1132 | 1999—2005年 | TNIP |
鲁朗 | 29.8 | 94.7 | 3327 | 467 | 5.7 | 119 | 2007年 | TNIP |
拉孜 | 29.1 | 87.7 | 4000 | 216 | 13.7 | 41 | 2005年 | TNIP |
拉萨 | 29.7 | 91.1 | 3658 | 417 | 6.3 | 1041 | 1994—2006年 | TNIP |
改则 | 32.3 | 84.1 | 4430 | 229 | -1.0 | 322 | 1998—1999年 | TNIP |
堆村 | 28.6 | 90.5 | 5030 | 290 | -0.9 | 152 | 2004—2007年 | TNIP |
定日 | 28.7 | 87.1 | 4330 | 265 | 7.1 | 285 | 2000—2006年 | TNIP |
德令哈 | 37.4 | 97.4 | 2981 | 186 | 2.2 | 115 | 1992—2006年 | TNIP |
波密 | 29.9 | 95.8 | 2737 | 431 | 8.4 | 111 | 2007—2008年 | TNIP |
白地 | 29.1 | 90.4 | 4430 | 313 | 1.2 | 171 | 2004—2007年 | TNIP |
张掖 | 38.9 | 100.4 | 1483 | 154 | 7.8 | 86 | 1986—2003年 | GNIP |
乌鲁木齐 | 43.8 | 87.6 | 918 | 304 | 7.4 | 131 | 1986—2003年 | GNIP |
兰州 | 36.1 | 103.9 | 1517 | 322 | 10.4 | 41 | 1985—1999年 | GNIP |
喀布尔 | 34.7 | 69.1 | 1860 | 330 | 11.6 | 109 | 1962—1991年 | GNIP |
和田 | 37.1 | 79.6 | 1375 | 209 | 9.1 | 47 | 1988—1992年 | GNIP |
[1] |
Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
doi: 10.3402/tellusa.v16i4.8993 |
[2] |
Gao Jing, Masson-Delmotte V, Risi C, et al. What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam[J]. Tellus Series B-Chemical and Physical Meteorology, 2013, 65: 1, 21043, doi: 10.3402/tellusb.v65i0.21043.
doi: 10.3402/tellusb.v65i0.21043 |
[3] | Guenther F, Aichner B, Siegwolf R, et al. A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau[J]. Quaternary International, 2013, 313: 3-16. |
[4] |
Joswiak D R, Yao Tandong, Wu Guangjian, et al. Ice-core evidence of westerly and monsoon moisture contributions in the central Tibetan Plateau[J]. Journal of Glaciology, 2013, 59(213): 56-66.
doi: 10.3189/2013JoG12J035 |
[5] | Ren W, Yao Tandong, Yang Xiaoxin, et al. Implications of variations in δ18O and δD in precipitation at Madoi in the eastern Tibetan Plateau[J]. Quaternary International, 2013, 313-314: 56-61. |
[6] |
Liu Jianrong, Song Xianfang, Yuan Guofu, et al. Stable isotopic compositions of precipitation in China[J]. Tellus Series B-Chemical and Physical Meteorology, 2014, 66: 1, 22569, doi: 10. 3402/tellusb. v66. 22567.
doi: 10. 3402/tellusb. v66. 22567 |
[7] |
Tian Lide, Yao Tandong, Macclune K, et al. Stable isotopic variations in west China: A consideration of moisture sources[J]. Journal of Geophysical Research-Atmospheres, 2007, 112, D10112, doi: 10.1029/2006JD007718.
doi: 10.1029/2006JD007718 |
[8] |
Yu Wusheng, Yao Tandong, Tian Lide, et al. Relationships between δ18O in precipitation and air temperature and moisture origin on a south-north transect of the Tibetan Plateau[J]. Atmospheric Research, 2008, 87(2): 158-169.
doi: 10.1016/j.atmosres.2007.08.004 |
[9] |
Chakraborty S, Sinha N, Chattopadhyay R, et al. Atmospheric controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal[J]. Scientific Reports, 2016, 6: 19555.
doi: 10.1038/srep19555 pmid: 26806683 |
[10] | Dong W, Lin Y, Wright J S, et al. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent[J]. Science Foundation in China, 2016, 7: 19. |
[11] | 田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部降水稳定同位素变化与季风活动[J]. 地球化学, 2001, 30(3): 217-222. |
[ Tian Lide, Yao Tandong, Sun Weizhen, et al. Stable isotope variation of precipitation in the middle of Qinghai-Xizang Plateau and monsoon activity[J]. Geochimica, 2001, 30(3): 217-222. ] | |
[12] | 田立德, 姚檀栋. 青藏高原冰芯高分辨率气候环境记录研究进展[J]. 科学通报, 2016, 61(9): 926-937. |
[ Tian Lide, Yao Tandong. High-resolution climatic and environmental records from the Tibetan Plateau ice cores[J]. Chinese Science Bulletin, 2016, 61(9): 926-937. ] | |
[13] | 何由, 高晶, 姚檀栋, 等. 利用不同插值方法对青藏高原降水稳定同位素空间分布分析[J]. 冰川冻土, 2015, 37(2): 351-359. |
[ He You, Gao Jing, Yao Tandong, et al. Spatial distribution of stable isotope in precipitation upon the Tibetan Plateau analyzed with various interpolation methods[J]. Journal of Glaciology & Geocryology, 2015, 37(2): 351-359. ] | |
[14] | 高晶, 田立德, 刘勇勤, 等. 青藏高原南部羊卓雍错流域稳定同位素水文循环研究[J]. 科学通报, 2009, 54(15): 2153-2159. |
[ Gao Jing, Tian Lide, Liu Yongqin, et al. Oxygen isotope variation in the water cycle of the Yamzho lake Basin in southern Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(15): 2153-2159. ] | |
[15] | 段克勤, 姚檀栋, 王宁练, 等. 青藏高原南北降水变化差异研究[J]. 冰川冻土, 2008, 30(5): 726-732. |
[ Duan Keqin, Yao Tandong, Wang Ninglian, et al. The difference in precipitation variability between the North and South Tibetan Plateaus[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 726-732. ] | |
[16] | 田立德, 姚檀栋, 余武生, 等. 青藏高原水汽输送与冰芯中稳定同位素记录[J]. 第四纪研究, 2006, 26(2): 145-152. |
[ Tian Lide, Yao Tandong, Yu Wusheng, et al. Stable isotopes of precipitation and ice core on the Tibetan Plateau and moisture transports[J]. Quaternary Sciences, 2006, 26(2): 145-152. ] | |
[17] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[ Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
doi: 10.11821/dlxb201701010 |
|
[18] |
Yao Tandong, Masson-Delmotte V, Gao Jing, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51: 525-548.
doi: 10.1002/rog.v51.4 |
[19] | 章新平, 姚檀栋, 中尾正义, 等. 青藏高原及其毗邻地区降水中稳定同位素成分的经向变化[J]. 冰川冻土, 2002, 24(3): 245-253. |
[ Zhang Xinping, Yao Tandong, Nakawo Masayoshi, et al. Meridianal variation of stable isotopic compositions in precipitation of the Tibetan Plateau and its adjacent regions[J]. Journal of Glaciolgy and Geocryology, 2002, 24(3): 245-253. ] | |
[20] | 孙从建, 张子宇, 李捷, 等. 青藏高原西北部大气降水稳定同位素时空特征变化[J]. 山地学报, 2018, 36(2): 217-228. |
[ Sun Conjian, Zhang Ziyu, Li Jie, et al. Temporal and spatial characteristics of stable isotopes of atmospheric precipitation in the Northwestern Tibetan Plateau[J]. Mountain Research, 2018, 36(2): 217-228. ] | |
[21] | 余武生, 马耀明, 孙维贞, 等. 青藏高原西部降水中δ18O变化特征及其气候意义[J]. 科学通报, 2009, 54(15): 2131-2139. |
[ Yu Wusheng, Ma Yaoming, Sun Weizhen, et al. Climatic significance of δ18O records from precipitation on the western Tibetan Plateau[J]. Chinese Science Bulletin, 2009, 54(15): 2131-2139. ] | |
[22] | 文蓉, 田立德, 翁永标, 等. 喜马拉雅山南坡降水与河水中δ18O高程效应[J]. 科学通报, 2012, 57(12): 1053-1059. |
[ Wen Rong, Tian Lide, Weng Yongbiao, et al. The altitude effect of δ18O in precipitation and river water in the Southern Himalayas[J]. Chinese Science Bulletin, 2012, 57(12): 1053-1059. ] | |
[23] |
Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J]. Earth and Planetary Science Letters, 2001, 188(1-2): 253-268.
doi: 10.1016/S0012-821X(01)00324-7 |
[24] |
Yang X, Yao T. Seasonality of moisture supplies to precipitation over the Third Pole: A stable water isotopic perspective[J]. Scientific Reports, 2020, 10(1): 15020.
doi: 10.1038/s41598-020-71949-0 |
[25] | Adhikari N, Gao J, Yao T D, et al. The main controls of the precipitation stable isotopes at Kathmandu, Nepal[J]. Tellus Series B-Chemical and Physical Meteorology, 2020, 72(1): 1-17. |
[26] |
He Y, Risi C, Gao J, et al. Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling[J]. Journal of Geophysical Research-Atmospheres, 2015, 120(9): 3852-3871.
doi: 10.1002/2014JD022180 |
[27] | 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869. |
[ Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869. ] | |
[28] | 孙从建, 张子宇, 陈伟, 等. 亚洲中部高山降水稳定同位素空间分布特征[J]. 干旱区研究, 2019, 36(1): 19-28. |
[ Sun Conjian, Zhang Ziyu, Chen Wei, et al. Spatial distribution ofprecipitation stable isotopes in the alpine zones in Central Asia[J]. Arid Zone Research, 2019, 36(1): 19-28. ] | |
[29] | 张亚宁, 张明军, 王圣杰, 等. 基于比湿订正拉格朗日模型的新疆短时强降水的水汽来源[J]. 干旱区研究, 2019, 36(3): 698-711. |
[ Zhang Yaning, Zhang Mingjun, Wang Shengjie, et al. Water vapor sources of short-time heavy rainfall in Xinjiang based on specific humidity-adjusted lagrangian modelel[J]. Arid Zone Research, 2019, 36(3): 698-711. ] | |
[30] | Ma Q, Zhang M, Wang S, et al. Contributions of moisture from local evaporation to precipitations in Southeast China based on hydrogen and oxygen isotopes[J]. Progress in Geography, 2013, 32(11): 1712-1720. |
[31] | 童佳荣, 周明亮, 孙自永, 等. 基于D, 18O同位素和Hysplit4气团轨迹模型的黑河上游降水水汽来源研究[J]. 干旱区资源与环境, 2016, 30(7): 151-156. |
[ Tong Jiarong, Zhou Mingliang, Sun Ziyong, et al. Water vapor sources precipitation in the upper reaches of heihe river: Evidence from stable water isotopes and air mass trajectory model[J]. Journal of Arid Land Resources and Environment, 2016, 30(7): 151-156. ] | |
[32] | Wang S, Jiao R, Zhang M, et al. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): e2020JD033075. |
[33] |
Wang S, Zhang M, Che Y, et al. Contribution of recycled moisture to precipitation in oases of arid Central Asia: A stable isotope approach[J]. Water Resources Research, 2016, 52(4): 3246-3257.
doi: 10.1002/2015WR018135 |
[34] |
Wang S, Zhang M, Che Y, et al. Influence of below-cloud evaporation on deuterium excess in precipitation of arid Central Asia and its meteorological controls[J]. Journal of Hydrometeorology, 2016, 17(7): 1973-1984.
doi: 10.1175/JHM-D-15-0203.1 |
[35] | Wang S, Zhang M, Hughes C E, et al. Factors controlling stable isotope composition of precipitation in arid conditions: an observation network in the Tianshan Mountains, Central Asia[J]. Tellus Series B-Chemical and Physical Meteorology, 2016, 68(Suppl.): 289-299. |
[1] | SHEN Hongyan, WEN Tingting, ZHAO Xianrong, FENG Xiaoli. Evaluation of multi-model precipitation simulation over the Tibetan Plateau in early winter [J]. Arid Zone Research, 2023, 40(7): 1027-1039. |
[2] | LIU Xiao, GUO Peng, QI Jiafeng, DU Wenling, ZHANG Ruqian, ZHANG Kun. Spatio-temporal changes and driving forces in the ecological environment of Altay City determined using an MRSEI model [J]. Arid Zone Research, 2023, 40(6): 1014-1026. |
[3] | LI Xinlei, LI Ruiping, WANG Xiuqing, WANG Sinan, WANG Chengkun. Spatiotemporal change and analysis of factors driving forest-grass vegetation coverage in Hetao Irrigation District based on geographical detector [J]. Arid Zone Research, 2023, 40(4): 623-635. |
[4] | MA Haowen, WANG Yongfang, GUO Enliang. Remote sensing monitoring of aeolian desertification in Ongniud Banner based on GEE [J]. Arid Zone Research, 2023, 40(3): 504-516. |
[5] | XU Tao,YU Huan,KONG Bo,QIU Xia,HU Mengke,LING Pengfei. Spatial heterogeneity of gravel size in Northern Tibetan Plateau [J]. Arid Zone Research, 2023, 40(2): 292-302. |
[6] | HE Jing,Jilili ABUDUWAILI,MA Long,Galymzhan SAPAROV,Gulnura ISSANOVA. Grain size characteristics and spatial heterogeneity of farmland soils in the Syr Darya River Basin of Kazakhstan [J]. Arid Zone Research, 2022, 39(4): 1282-1292. |
[7] | WEN Tingting,GUO Yingxiang,DONG Shaorui,DONG Yuanzhen,LAI Xiaoling. Assessment of CRU, ERA5, CMFD grid precipitation data for the Tibetan Plateau from 1979 to 2017 [J]. Arid Zone Research, 2022, 39(3): 684-697. |
[8] | ZHANG Junxia,KONG Xiangwei,LIU Xinwei,WANG Yong. Spatial error characteristics of rainstorm forecasts of large-scale numerical model over the northeastern side of Tibetan Plateau [J]. Arid Zone Research, 2022, 39(1): 64-74. |
[9] | WEN Guangchao,ZHAO Meijuan,XIE Hongbo,ZHANG Yi,ZHANG Juan. Analysis of land vegetation cover evolution and driving forces in the western part of the Ili River Valley [J]. Arid Zone Research, 2021, 38(3): 843-854. |
[10] | WANG Kunxin, ZHANGYinsheng, ZHANG Teng, YU Kunlun, GUO Yanhong, MA Ning. Analysis of climate change in the Selin Co Basin,Tibetan-Plateau,from 1979 to 2017 [J]. Arid Zone Research, 2020, 37(3): 652-. |
[11] | . Spatiotemporal evolution and driving factors of landscape ecological vulnerability in Shaanxi Province [J]. Arid Zone Research, 2020, 37(2): 496-505. |
[12] |
JIN Sun-mei, HOU Guang-liang, XU Chang-jun, Lancuo Zhuoma, LI Sheng-mei.
Spatiotemporal Changes and Driving Factors of Cultural Relicts on the Tibetan Plateau Since the Holocene [J]. Arid Zone Research, 2019, 36(5): 1049-1059. |
[13] | QI Yan, YAN Yu-qian, LI Jin-hai, CHEN Wen-jiang. Relationship Between Surface Latent Heat Flux over the Qinghai Tibetan Plateau and Precipitation in Qinghai from May to October [J]. Arid Zone Research, 2019, 36(3): 529-536. |
[14] | WANG Bu wei, ZHANG Xue qin. Change and Attribution of Reference Evapotranspiration over the Tibetan Plateau during the Period of 1971-2014 [J]. Arid Zone Research, 2019, 36(2): 269-279. |
[15] |
Ablekim Abdimijit, GE Yong-xiao, WANG Ya-jun, HU Ru-ji.
The Past,Present and Feature of the Aral Sea [J]. Arid Zone Research, 2019, 36(1): 7-18. |
|