Arid Zone Research ›› 2024, Vol. 41 ›› Issue (9): 1491-1502.doi: 10.13866/j.azr.2024.09.06
• Weather and Climate • Previous Articles Next Articles
LU Wenjing1,2(), QU Deye1,2(), YANG Mingyue1,2, HUANG Hanlin1,2, YANG Shanquan1,2
Received:
2024-03-13
Revised:
2024-04-30
Online:
2024-09-15
Published:
2024-09-25
Contact:
QU Deye
E-mail:lwj002277@163.com;qudeye@nwnu.edu.cn
LU Wenjing, QU Deye, YANG Mingyue, HUANG Hanlin, YANG Shanquan. GCM-based stable isotope modelling of precipitation in the Mongolian Plateau[J].Arid Zone Research, 2024, 41(9): 1491-1502.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Basic information of stable isotope-equipped of GCM used in the study"
GCM模式 | 模式来源 | 空间分辨率 | 模拟方法 |
---|---|---|---|
CAM2(free) | 美国国家大气研究中心 | 2.81°×2.81° | AMIP标准 |
LMDZ(free) | 法国气象动力实验室 | 3.75°×2.54° | AMIP标准 |
LMDZ(ECMWF) | 法国气象动力实验室 | 3.75°×2.54° | ECMWF张弛逼近 |
isoGSM(NCEP) | 日本东京大学 | 1.88°×1.90° | NCEP张弛逼近 |
MIROC(free) | 日本东京气候系统研究中心 | 2.81°×2.79° | AMIP标准 |
Tab. 3
Characteristics of δ18O and δD data from GNIP measurements and GCM simulations in the Mongolian Plateau"
δ18O/‰ | δD/‰ | ||||||||
---|---|---|---|---|---|---|---|---|---|
最小值 | 月份 | 最大值 | 月份 | 最小值 | 月份 | 最大值 | 月份 | ||
GNIP | -21.90 | 12月 | -5.22 | 5月 | -170.13 | 12月 | -42.15 | 5月 | |
CAM2(free) | -28.23 | 12月 | -5.69 | 6月 | -223.56 | 1月 | -43.43 | 4月 | |
LMDZ(free) | -32.57 | 1月 | -1.61 | 9月 | -277.40 | 1月 | -3.93 | 5月 | |
LMDZ(ECMWF) | -28.11 | 12月 | -1.07 | 5月 | -204.71 | 12月 | -15.19 | 6月 | |
isoGSM(NCEP) | -41.01 | 1月 | -18.47 | 6月 | -311.38 | 1月 | -136.46 | 6月 | |
MIROC(free) | -29.57 | 12月 | -5.02 | 5月 | -236.56 | 12月 | -36.50 | 4月 |
Tab. 4
Linear relationship between δ18O and temperature in Ulaanbaatar and Baotou precipitation measured by GNIP and simulated by GCM"
乌兰巴托 | 包头 | ||||
---|---|---|---|---|---|
温度效应 | R | 温度效应 | R | ||
GNIP | δ18O=0.45T-15.89 | 0.79 | δ18O=0.39T-11.44 | 0.61 | |
CAM2(free) | δ18O=0.29T-16.50 | 0.88 | δ18O=0.23T-16.36 | 0.69 | |
LMDZ(free) | δ18O=0.47T-14.94 | 0.91 | δ18O=0.23T-10.69 | 0.75 | |
LMDZ(ECMWF) | δ18O=0.44T-14.56 | 0.93 | δ18O=0.38T-10.98 | 0.87 | |
isoGSM(NCEP) | δ18O=0.43T-28.38 | 0.92 | δ18O=0.34T-29.92 | 0.86 | |
MIROC(free) | δ18O=0.33T-16.97 | 0.90 | δ18O=0.33T-16.40 | 0.77 |
[1] |
周思捷, 孙从建, 陈伟, 等. 黄土高原东部夏半年降水稳定同位素特征及水汽来源分析[J]. 地理学报, 2022, 77(7): 1745-1761.
doi: 10.11821/dlxb202207012 |
[Zhou Sijie, Sun Congjie, Chen Wei, et al. Precipitation isotope characteristics and water vapor sourcesin summer in eastern Loess Plateau[J]. Journal of Geographical Sciences, 2022, 77(7): 1745-1761.] | |
[2] | 折远洋, 王圣杰, 王鹏, 等. 西秦岭地区大气降水氢氧稳定同位素特征[J]. 地球与环境, 2023, 51(2): 143-152. |
[She Yuanyang, Wang Shengjie, Wang Peng, et al. Stable hydrogen and oxygen isotopes in precipitation in the western Qinling Mountains[J]. Earth and Environment, 2023, 51(2): 143-152.] | |
[3] | 贺强, 孙从建, 吴丽娜, 等. 基于GNIP的黄土高原区大气降水同位素特征研究[J]. 水文, 2018, 38(1): 58-66. |
[He Qiang, Sun Congjian, Wu Lina, et al. Study on isotopic characteristics of atmospheric precipitation in Loess Plateau based on GNIP[J]. Journal of China Hydrology, 2018, 38(1): 58-66.] | |
[4] | 赵伟, 郝成元. 中国大陆夏季水汽稳定同位素空间特征[J]. 气象与环境科学, 2019, 42(1): 54-59. |
[Zhao Wei, Hao Chengyuan. Spatial characteristics of stable isotope in summer precipitation in China mainland[J]. Meteorological and Environmental Sciences, 2019, 42(1): 54-59.] | |
[5] |
Antunes P, Boutt D F, Rodrigues F C. Orographic distillation and spatio-temporal variations of stable isotopes in precipitation in the North Atlantic[J]. Hydrological Processes, 2019, 33(5): 775-793.
doi: 10.1002/hyp.13362 |
[6] | Araguás L A, Froehlich K, Rozanski K. Stable isotope composition of precipitation over southeast Asia[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D22): 28721-28742. |
[7] | Hatvani I G, Erdélyi D, Vreča P, et al. Analysis of the spatial distribution of stable oxygen and hydrogen isotopes in precipitation across the Iberian Peninsula[J]. Water, 2020, 12(2): 481. |
[8] | Prasad G, Chinnasamy P, Cartwright I. Role of stable isotopes in revealing moisture sources and rainfall variability in India[J]. Dynamics of Atmospheres and Oceans, 2024, 106(48): 101444. |
[9] | 郭鑫, 李文宝, 杜蕾, 等. 内蒙古夏季大气降水同位素特征及影响因素[J]. 中国环境科学, 2022, 42(3): 1088-1096. |
[Guo Xin, Li Wenbao, Du Lei, et al. Characteristics and influence factors for the hydrogen and oxygen isotopic of precipitation in Inner Mongolia[J]. China Environmental Science, 2022, 42(3): 1088-1096.] | |
[10] | 王圣杰, 张明军. 新疆天山降水稳定同位素的时空特征与影响因素[J]. 第四纪研究, 2017, 37(5): 1119-1130. |
[Wang Shengjie, Zhang Mingjun. Spatio-temporal characteristics and influencing factors of stable isotopes in precipitation across the Chinese Tianshan Mountains[J]. Quaternary Sciences, 2017, 37(5): 1119-1130.] | |
[11] | Liu J, Song X, Yuan G, et al. Stable isotopic compositions of precipitation in China[J]. Tellus B: Chemical and Physical Meteorology, 2014, 66(1): 22567. |
[12] |
陈举藩, 陈粉丽, 武茜茜, 等. 基于LMDZ模型的蒙古高原降水氢氧稳定同位素特征及水汽来源分析[J]. 地理科学, 2022, 42(9): 1654-1664.
doi: 10.13249/j.cnki.sgs.2022.09.015 |
[Chen Jufan, Chen Fenli, Wu Xixi, et al. Hydrogen and oxygen stable isotope characteristics and water vapor sources of precipitation over Mongolian Plateau based on LMDZ model[J]. Scientia Geographica Sinica, 2022, 42(9): 1654-1664.]
doi: 10.13249/j.cnki.sgs.2022.09.015 |
|
[13] | 曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869. |
[Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869. | |
[14] |
Zhang M, Wang S. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J]. Journal of Geographical Sciences, 2016, 26(7): 921-938.
doi: 10.1007/s11442-016-1307-y |
[15] | Resmi T R, Sudharma K V, Hameed A S. Stable isotope characteristics of precipitation of Pamba River basin, Kerala, India[J]. Journal of Earth System Science, 2016, 125(7): 1481-1493. |
[16] | 章新平, 孙治安, 张新主, 等. 东亚降水中δ18O的GCM模拟及其与GNIP实测值的比较[J]. 第四纪研究, 2012, 32(1): 67-80. |
[Zhang Xinping, Sun Zhi’an, Zhang Xinzhu, et al. Intercomparison of δ18O in precipitation simulated by isotopic GCMS With GNIP observations over East Asia[J]. Quaternary Sciences, 2012, 32(1): 67-80.] | |
[17] |
王学界, 章新平, 张婉君, 等. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
doi: 10.11867/j.issn.1001-8166.2017.09.0983 |
[Wang Xuejie, Zhang Xinping, Zhang Wanjun, et al. Comparison on spatial distribution of hydrogen and oxygen stable isotope GCM simulation in global precipitation[J]. Advances in Earth Science, 2017, 32(9): 983-995.]
doi: 10.11867/j.issn.1001-8166.2017.09.0983 |
|
[18] | 廖亚一, 谢冰波, 赵盼盼. 基于打分法评估GCM模式模拟降水的性能[J]. 水利规划与设计, 2023(5): 24-33, 101. |
[Liao Yayi, Xie Bingbo, Zhao Panpan. Evaluation of the performance of the GCM model for simulating precipitation based on a scoring approach[J]. Water Planning and Design, 2023(5): 24-33, 101.] | |
[19] | 李昕潼, 李占玲, 韩孺村. 不同偏差校正法对GCM降水数据的应用效果分析[J]. 水文, 2023, 43(3): 93-100, 117. |
[Li Xintong, Li Zhanling, Han Rucun. Evaluations of different bias correction methods on the GCM precipitation data[J]. Journal of China Hydrology, 2023, 43(3): 93-100, 117.] | |
[20] | 李宁, 白蕤, 李玮, 等. 基于格网的GCM数据修订分析未来海南岛农业水热资源的变化特征[J]. 中国农业气象, 2021, 42(6): 447-462. |
[Li Ning, Bai Rui, Li Wei, et al. Analysis of the change of agricultural heat and precipitation resources based on grid revision of GCM outputs in Hainan island[J]. Chinese Journal of Agrometeorology, 2021, 42(6): 447-462.] | |
[21] | 章新平, 孙治安, 关华德, 等. 东亚水循环中水稳定同位素的GCM模拟和相互比较[J]. 冰川冻土, 2011, 33(6): 1274-1285. |
[Zhang Xinping, Sun Zhi’an, Guan Huade, et al. GCM simulation of stable water isotopes in water cycle and intercomparisons over East Asia[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1274-1285.] | |
[22] | 潘素敏, 张明军, 王圣杰, 等. 基于GCM的中国土壤水中δ18O的分布特征[J]. 生态学杂志, 2017, 36(6): 1727-1738. |
[Pan Sumin, Zhang Mingjun, Wang Shengjie, et al. Distribution characteristics of δ18O in soil water in China based on GCMs[J]. Chinese Journal of Ecology, 2017, 36(6): 1727-1738.] | |
[23] | 石梦雨, 王圣杰, 姚俊强, 等. 基于GCM的乌鲁木齐水汽稳定同位素变化特征及其与ENSO的关系[J]. 干旱气象, 2018, 36(6): 895-904. |
[Shi Mengyu, Wang Shengjie, Yao Junqiang, et al. Variation of stable isotope in water vapor over Urumqi and its relationship with ENSO based on isotope enabled-GCMs[J]. Journal of Arid Meteorology, 2018, 36(6): 895-904.] | |
[24] | 杨森, 张明军, 王圣杰. 基于GCM和冰芯的天山地区降水同位素的水汽来源影响机制[J]. 干旱区研究, 2018, 35(2): 425-435. |
[Yang Sen, Zhang Mingjun, Wang Shengjie. Affecting mechanism of moisture sources of isotopes in precipitation in the Tianshan Mountains Based on GCMs and ice core[J]. Arid Zone Research, 2018, 35(2): 425-435.] | |
[25] | Shi X Y, Risi C, Li L, et al. What controls the skill of general circulation models to simulate the seasonal cycle in water isotopic composition in the Tibetan Plateau region?[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(22): e2022JD037048. |
[26] | 孙慧, 萨楚拉, 孟凡浩, 等. 2000—2020年蒙古高原积雪覆盖率时空变化及其影响因素分析[J]. 赤峰学院学报(自然科学版), 2022, 38(11): 1-6. |
[Sun Hui, Sa Chula, Meng Fanhao, et al. Spatial and temporal variations of snow cover on the Mongolian Plateau and its influencing factors, 2000-2020[J]. Journal of Chifeng University (Natural Science Edition), 2022, 38(11): 1-6.] | |
[27] |
张港栋, 包刚, 元志辉, 等. 2001—2020年蒙古高原昼夜非对称变暖对植被返青期的影响[J]. 干旱区地理, 2023, 46(5): 700-710.
doi: 10.12118/j.issn.1000-6060.2022.395 |
[Zhang Gangdong, Bao Gang, Yuan Zhihui, et al. Effects of asymmetric warming of daytime and nighttime on the start of growing season on the Mongolian Plateau from 2001 to 2020[J]. Arid Land Geography, 2023, 46(5): 700-710.]
doi: 10.12118/j.issn.1000-6060.2022.395 |
|
[28] | 张艳珍, 王钊齐, 杨悦, 等. 蒙古高原草地退化程度时空分布定量研究[J]. 草业科学, 2018, 35(2): 233-243. |
[Zhang Yanzhen, Wang Zhaoqi, Yang Yue, et al. Research on the quantitative evaluation of grassland degradation and spatial and temporal distribution on the Mongolia Plateau[J]. Pratacultural Science, 2018, 35(2): 233-243.] | |
[29] | Xin Y, Yang Y, Chen X, et al. One-kilometre monthly air temperature and precipitation product over the Mongolian Plateau for 1950-2020[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2023, 43(8): 3877-3891. |
[30] |
韦昊延, 陆彦玮, 李敏, 等. 中国西北内陆季风区基于不同时间尺度和回归方法的大气水线比较[J]. 应用生态学报, 2023, 34(3): 657-663.
doi: 10.13287/j.1001-9332.202303.026 |
[Wei Haoyan, Lu Yanwei, Li Min, et al. Comparison of meteoric water lines at different temporal scales and regression methods in inland monsoon region, Northwest China[J]. Chinese Journal of Applied Ecology, 2023, 34(3): 657-663.]
doi: 10.13287/j.1001-9332.202303.026 |
|
[31] |
Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
pmid: 17814749 |
[32] | Zhu G F, Li J F, Shi P J, et al. Relationship between sub-cloud secondary evaporation and stable isotope in precipitation in different regions of China[J]. Environmental Earth Sciences, 2016, 75(10): 876. |
[33] | 李文宝, 李畅游, 贾德彬, 等. 内蒙古中部夏季大气降水中同位素变化[J]. 干旱区研究, 2017, 34(6): 1214-1221. |
[Li Wenbao, Li Changyou, Jia Debin, et al. Change of stable isotopes in summer precipitation in central Inner Mongolia[J]. Arid Zone Research, 2017, 34(6): 1214-1221.]
doi: 10.13866/j.azr.2017.06.02 |
|
[34] | Cappa C D, Hendricks M B, Depaolo D J, et al. Isotopic fractionation of water during evaporation[J]. Journal of Geophysical Research Atmospheres, 2003, 108(16): 4525. |
[35] | Sangchul L, Carlington W, Ali S, et al. Impacts of global circulation model (GCM) bias and WXGEN on modeling hydrologic variables[J]. Water, 2018, 10(6): 764. |
[36] | Che Y, Zhang M, Wang S, et al. Stable water isotopes of precipitation in China simulated by SWING2 models[J]. Arabian Journal of Geosciences, 2016, 9(19): 732. |
[37] | Wang S J, Zhang M J, Chen F L, et al. Comparison of GCM-simulated isotopic compositions of precipitation in arid central Asia[J]. Journal of Geographical Sciences, 2015, 25(7): 13. |
[38] | Salamalikis V, Argiriou A A, Dotsika E. Periodicity analysis of delta O-18 in precipitation over Central Europe: Time-frequency considerations of the isotopic ‘temperature’ effect[J]. Journal of Hydrology, 2016, 534(54): 150-163. |
[39] | Risi C, Noone D, Worden J, et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D5): 1-26. |
[40] |
Fiorella R P, West J B, Bowen G J. Biased estimates of the isotope ratios of steady-state evaporation from the assumption of equilibrium between vapour and precipitation[J]. Hydrological Processes, 2019, 33(19): 2576-2590.
doi: 10.1002/hyp.13531 |
[41] | Risi C, Noone D, Worden J, et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D5): 1-25. |
[42] | 周鑫, 陈粉丽, 刘雪媛, 等. 基于大气环流模式(GCM)的黄土高原区降水稳定同位素模拟分析比较[J]. 环境化学, 2021, 40(4): 1179-1186. |
[Zhou Xin, Chen Fenli, Liu Xueyuan, et al. Analysis and comparison of simulated stable isotopes of precipitation in the Loess Plateau based on GCMs[J]. Environmental Chemistry, 2021, 40(4): 1179-1186.] | |
[43] | Peng P Y, Zhang X C J, Chen J. Bias correcting isotope-equipped GCMs outputs to build precipitation oxygen isoscape for eastern China[J]. Journal of Hydrology, 2020, 589(58): 125153. |
[44] | Xiao Y, Yang G, Yoshimura K, et al. Altitude correction of GCM-Simulated precipitation isotopes in a valley topography of the Chinese Loess Plateau[J]. Sustainability, 2023, 15(17): 13126. |
|