Arid Zone Research ›› 2024, Vol. 41 ›› Issue (8): 1272-1287.doi: 10.13866/j.azr.2024.08.02
• Weather and Climate • Previous Articles Next Articles
LI Chao1,2(), LONG Xiao1(), CAO Yiqing1, HAN Zifei3, WANG Hao1, ZHENG Jingyuan1
Received:
2024-01-19
Revised:
2024-04-16
Online:
2024-08-15
Published:
2024-08-22
Contact:
LONG Xiao
E-mail:lichao_meso@qq.com;longxiao@lzu.edu.cn
LI Chao, LONG Xiao, CAO Yiqing, HAN Zifei, WANG Hao, ZHENG Jingyuan. Ideal numerical tests of topographic precipitation around the Helan Mountain under different wind field structures[J].Arid Zone Research, 2024, 41(8): 1272-1287.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Precipitation process information"
暴雨时段(北京时) | 持续时间/h | 最大雨量/mm |
---|---|---|
2009年7月7日8:00—8日7:00 | 24 | 汝箕沟107.6 |
2012年7月29日20:00—30日11:00 | 16 | 滚钟口174.3 |
2015年9月3日4:00—4日1:00 | 21 | 小口子65.9 |
2015年9月8日1:00—8日20:00 | 20 | 八顷村69.6 |
2016年7月24日5:00—12:00 | 8 | 灵武煤矿89.5 |
2016年8月13日15:00—14日14:00 | 24 | 王老滩110.2 |
2016年8月21日19:00—22日8:00 | 14 | 滑雪场241.7 |
2016年8月22日22:00—23日6:00 | 9 | 路家营子村57 |
2017年6月4日15:00—5日10:00 | 20 | 黄旗口沟116.5 |
2017年7月25日20:00—26日2:00 | 6 | 窑子圈64.4 |
2017年7月5日3:00—18:00 | 16 | 滑雪场114.4 |
2018年7月19日3:00—10:00 | 8 | 明长城136.2 |
2018年7月1日9:00—2日1:00 | 17 | 牛首山84.3 |
2018年7月22日19:00—23日7:00 | 13 | 滑雪场277.6 |
2018年7月23日12:00—20:00 | 9 | 红翔新村89.3 |
2018年8月31日19:00—9月1日17:00 | 23 | 苦水沟136.9 |
2018年8月6日12:00—7日16:00 | 29 | 马莲口119.1 |
2018年8月9日12:00—10日13:00 | 26 | 临河镇71.4 |
2019年8月2日18:00—3日0:00 | 7 | 暖泉农场71 |
2020年8月11日7:00—12日8:00 | 26 | 五渠村142.5 |
Fig. 2
Vertical distribution (gray solid line) of specific humidity (a, unit: g·kg-1), potential temperature (b, unit: K), wind speed (c, unit: m·s-1) and average distribution of meteorological elements (black solid line) during individual precipitation of 20 rainstorms at the eastern foot of Helan Mountain"
Tab. 2
Design of experiments"
试验名称 | N/s-1 | 比湿/(g·g-1) | 风场结构 | 东风/(m·s-1) | 西风/(m·s-1) | 试验目的 | |
---|---|---|---|---|---|---|---|
干过程 (WRF-dry) | D1 | N = 0.007 | 0 | (Ⅰ) | u0:-4、-6、-8、-10、-13、-15 | - | 重力波特征 |
D2 | (Ⅱ) | ushear:-8、-10、-12、-15 | - | ||||
湿过程 (WRF-moist) | M1 | 以20次降水过程的平均位温阔线 作为初始场 | 以20次降水过程 的平均比湿阔线 作为初始场 | (Ⅰ) | u0:-4、-5、-6、-7、-8、-9、-10、-11、 -12、-13、-14 | - | 重力波特征、 降水分布 特征 |
M2 | (Ⅱ) | ushear:-8、-9、-10、-11、-12、-13、-14、 -15、-16、-17、-18、-19、-20、-22 | - | ||||
M3 | (Ⅲ) | u1:-14 | u2:5、10、20、 30、40 |
Fig. 5
Vertical velocity field (shadow, unit: m·s-1) and vertical velocity variation at 2 km height on both sides of the mountain (red line, unit: m·s-1) simulated by easterly cross-mountain experiments (D2) with different sizes of wind shear (a: ushear =-8 m·s-1, b: ushear =-10 m·s-1, c: ushear =-12 m·s-1, d: ushear =-15 m·s-1)"
Fig. 9
Simulated cloud water content (shadow, unit: 10-4 kg·kg-1), flow field (vector arrow, unit: m·s-1) vertical profile at 540 min and accumulated precipitation during 480-600 min (red curve, unit: mm) in M1 experiments (a: u0= -6 m·s-1, b: u0= -7 m·s-1, c: u0= -8 m·s-1, d: u0= -9 m·s-1, e: u0= -10 m·s-1, f: u0= -11 m·s-1)"
Fig. 12
Simulated cloud water content (shadow, unit: 10-4 kg·kg-1), flow field (vector arrow, unit: m·s-1) vertical profile at 540 min and accumulated precipitation during 480-600 min (red curve, unit: mm) in M2 experiments (a: ushear=-9 m·s-1, b: ushear=-11 m·s-1, c: ushear= -13 m·s-1, d: ushear= -15 m·s-1, e: ushear= -17 m·s-1, f: ushear= -19 m·s-1 )"
Fig. 14
Simulated cloud water content (shadow, unit: 10-4 kg·kg-1), flow field (vector arrow, unit: m·s-1) vertical profile at 540 min and accumulated precipitation during 480-600 min (red curve, unit: mm) in M3 experiments (u1= -14 m·s-1; u2= 5 m·s-1(b), 10 m·s-1(c), 20 m·s-1(d), 30 m·s-1(e), 40 m·s-1(f) )"
[1] | Medina S, Houze R A. Air motions and precipitation growth in Alpine storms[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129: 345-371. |
[2] | Rotunno R, Ferretti R. Orographic effects on rainfall in MAP cases IOP 2b and IOP 8[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129: 373-390. |
[3] | Houze, Medina S. Turbulence as a mechanism for orographic precipitation enhancement[J]. Journal of the Atmospheric Sciences, 2005, 62: 3599-3623. |
[4] | Picard L, Mass C. The sensitivity of orographic precipitation to flow direction: An idealized modeling approach[J]. Journal of Hydro meteorology, 2017, 18(6): 1673-1688. |
[5] | Morales A, Posselt D J, Morrison H. Which combinations of environmental conditions and microphysical parameter values produce a given orographic precipitation distribution?[J]. Journal of the Atmospheric Sciences, 2021, 78(2): 619-638. |
[6] | 黄玉霞, 王宝鉴, 黄武斌, 等. 我国西北暴雨的研究进展[J]. 暴雨灾害, 2019, 38(5): 515-525. |
[ Huang Yuxia, Wang Baojian, Huang Wubin, et al. A review on rainstorm research in northwest China[J]. Torrential Rain and Disasters, 2019, 38(5): 515-525. ] | |
[7] |
钟水新. 地形对降水的影响机理及预报方法研究进展[J]. 高原气象, 2020, 39(5): 1122-1132.
doi: 10.7522/j.issn.1000-0534.2019.00083 |
[ Zhong Shuixin. Advances in the study of the influence mechanism and forecast methods for orographic precipitation[J]. Plateau Meteorology, 2020, 39(5): 1122-1132. ]
doi: 10.7522/j.issn.1000-0534.2019.00083 |
|
[8] | 李子良. 地形降水试验和背风回流降水机制[J]. 气象, 2006, 32(5): 10-15. |
[ Li Ziliang. Simulations of precipitation induced by reversal flow in lee of mountain[J]. Meteorological Monthly, 2006, 32(5): 10-15. ] | |
[9] | Scorer R S. Theory of waves in lee of mountains[J]. Quarterly Journal of the Royal Meteorological Society, 1949, 75: 41-56. |
[10] | Lin Yuh-Lang, Wang T A. Flow regimes and transient dynamics of two-dimensional stratified flow over an isolated mountain ridge[J]. Journal of the Atmospheric Sciences, 1996, 53(1): 139-158. |
[11] | 李子良. 三维多层流动过孤立山脉产生的山脉重力波的数值试验[J]. 北京大学学报: 自然科学版, 2006, 42(3): 351-356. |
[ Li Ziliang. Numerical simulations of mountain gravity waves generated by multi-layer flow over an isolated mountain[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(3): 351-356. ] | |
[12] | Xue H, Giorgetta M A. A large-eddy simulation study on the diurnally evolving nonlinear trapped lee waves over a two-dimensional steep mountain[J]. Journal of the Atmospheric Sciences, 2021, 78(2): 399-415. |
[13] | Colle, Brian A. Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective[J]. Journal of the Atmospheric Sciences, 2004, 61(5): 588-606. |
[14] | 杨婷, 闵锦忠, 张申龑. 分层气流条件下地形降水的二维理想数值试验[J]. 气象科学, 2017, 37(2): 222-230. |
[ Yang Ting, Min Jinzhong, Zhang Shenyan. Two-dimensional idealized numerical experiments on the orographic rainfall with a stratified flow over mountain[J]. Journal of the Meteorological Sciences, 2017, 37(2): 222-230. ] | |
[15] | 郭欣, 郭学良, 付丹红, 等. 钟形地形动力抬升和重力波传播与地形云和降水形成关系研究[J]. 大气科学, 2013, 37(4): 786-800. |
[ Guo Xin, Guo Xueliang, Fu Danhong, et al. Relationship between bell-shaped terrain dynamic forcing, mountain wave propagation, and orographic clouds and precipitation[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(4): 786-800. ] | |
[16] | Galewsky J, Sobel A. Moist dynamics and orographic precipitation in northern and Central California during the new year’s flood of 1997[J]. Monthly Weather Review, 2005, 133(6): 1594-1612. |
[17] | Lorente-Plazas R, Mitchell T P, Mauger G, et al. Local enhancement of extreme precipitation during atmospheric rivers as simulated in a regional climate model[J]. Journal of Hydrometeorology, 2018, 19(9): 1429-1446. |
[18] | Kirshbaum D J, Smith R B. Temperature and moist-stability effects on midlatitude orographic precipitation[J]. Quarterly Journal of the Royal Meteorological Society, 2008, 634: 134. |
[19] | Rotunno R, Houze R A. Lessons on orographic precipitation from the mesoscale alpine programme[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133: 811-830. |
[20] | Mott R, Scipión D, Schneebeli M, et al. Orographic effects on snow deposition patterns in mountainous terrain[J]. Journal of Geophysical Research-Atmospheres, 2014, 119: 1419-1439. |
[21] | 陶林科, 杨侃, 胡文东, 等. “7·30”大暴雨的数值模拟及贺兰山地形影响分析[J]. 沙漠与绿洲气象, 2014, 8(4): 32-39. |
[ Tao Linke, Yang Kan, Hu Wendong, et al. The contribution of Helan mountain to the formation of a heavy rainstorm occurred over Yinchuan Plain by numerical simulation[J]. Desert and Oasis Meteorology, 2014, 8(4): 32-39. ] | |
[22] |
王晖, 隆霄, 温晓培, 等. 2012年宁夏“7·29”大暴雨过程的数值模拟研究[J]. 高原气象, 2017, 36(1): 268-281.
doi: 10.7522/j.issn.1000-0534.2016.00017 |
[ Wang Hui, Long Xiao, Wen Xiaopei, et al. Numerical simulation studies on “2012∙7∙29” rainstorm process in Ningxia[J]. Plateau Meteorology, 2017, 36(1): 268-281.] | |
[23] | 陈晓娟, 王咏青, 毛璐, 等. 贺兰山区两次极端暴雨动力作用数值模拟分析[J]. 干旱区研究, 2020, 37(3): 680-688. |
[ Chen Xiaojuan, Wang Yongqing, Mao Lu, et al. Numerical simulation analysis of the dynamic effects of terrain on two extreme rainstorms on Helan Mountain[J]. Arid Zone Research, 2020, 37(3): 680-688. ] | |
[24] |
陈豫英, 苏洋, 杨银, 等. 贺兰山东麓极端暴雨的中尺度特征[J]. 高原气象, 2021, 40(1): 47-60.
doi: 10.7522/j.issn.1000-0534.2020.00012 |
[ Chen Yuying, Su Yang, Yang Yin, et al. The mesoscale characteristics of extreme rainstorm in the eastern region of Helan Mountain[J]. Plateau Meteorology, 2021, 40(1): 47-60. ]
doi: 10.7522/j.issn.1000-0534.2020.00012 |
|
[25] | Sever G, Lin Y L. Dynamical and physical processes associated with orographic precipitation in a conditionally unstable uniform flow: Variation in basic wind speed[J]. Journal of the Atmospheric sciences, 2016, 74(2): 449-466. |
[26] |
刘晶, 李娜, 陈春艳. 新疆北部一次暖区暴雪过程锋面结构及中尺度云团分析[J]. 高原气象, 2018, 37(1): 158-166.
doi: 10.7522/j.issn.1000-0534.2017.00008 |
[ Liu Jing, Li Na, Chen Chunyan. The frontal structure and analysis on mesoscale cloud characteristic during a warm zone blizzard process in north Xinjiang[J]. Plateau Meteorology, 2018, 37(1): 158-166. ]
doi: 10.7522/j.issn.1000-0534.2017.00008 |
|
[27] |
赵庆云, 张武, 陈晓燕, 等. 一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J]. 高原气象, 2018, 37(3): 767-776.
doi: 10.7522/j.issn.1000-0534.2017.00068 |
[ Zhao Qingyun, Zhang Wu, Chen Xiaoyan, et al. Propagation characteristics of mesoscale convection system in a event of severe convection rainstorm over both sides of Liupanshan Mountains[J]. Plateau Meteorology, 2018, 37(3): 767-776. ]
doi: 10.7522/j.issn.1000-0534.2017.00068 |
|
[28] | 姜志斌. 贺兰山地区气候变化和极端天气特征分析[D]. 兰州: 兰州大学, 2016. |
[ Jiang Zhibin. Analysis of Regional Climate Change and Extreme Weather Characteristics in Helan Mountains Region[D]. Lanzhou: Lanzhou University, 2016. ] | |
[29] | Chen Yuying, Li Jianping, Li Xin, et al. Spatio-temporal distribution of the rainstorm in the east side of the Helan Mountain and the possible causes of its variability[J]. Atmospheric Research, doi: https://doi.org/10.1016/j.atmosres.2021.105469. |
[30] | Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF version 3[J]. NCAR Technical Note NCAR/TN-475+STR. June 2008. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research, 2008, 475. |
[31] | 李驰钦, 左群杰, 高守亭, 等. 青藏高原上空一次重力波过程的识别与天气影响分析[J]. 气象学报, 2018, 76(6): 904-919. |
[ Li Chiqin, Zuo Qunjie, Gao Shouting, et al. Identification of a gravity wave process over the Tibetan Plateau and its impact on the weather[J]. Acta Meteorologica Sinica, 2018, 76(6): 904-919. ] | |
[32] | Smolarkiewicz P K, Rotunno R. Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices[J]. Journal of the Atmospheric Sciences, 1989, 46: 1154-1164. |
[33] | Smolarkiewicz P K, Rotunno R. Low Froude number flow past three dimensional obstacles. Part II: Upwind flow reversal zone[J]. Journal of the Atmospheric Sciences, 1990, 47: 1498-1511. |
[34] | 《西北暴雨》编写组. 西北暴雨[M]. 北京: 气象出版社, 1992. |
[ Editorial Group of “Northwest Rainstorm”. Northwest Rainstorm[M]. Beijing: China Meteorological Press, 1992. ] | |
[35] | 朱乾根, 林锦瑞, 寿邵文, 等. 天气学原理和方法[M]. 北京: 科学出版社, 2007: 320-400. |
[ Zhu Qiangen, Lin Jinrui, Shou Shaowen, et al. Synoptic Principles and Methods[M]. Beijing: Science Press, 2007: 320-400.] | |
[36] | 李超, 隆霄, 曹怡清, 等. 贺兰山东麓20次暴雨过程环流形势及低空急流特征[J]. 干旱区研究, 2022, 39(6): 1753-1767. |
[ Li Chao, Long Xiao, Cao Yiqing, et al. Circulation pattern and LLJ characteristics of 20 rainstorm events in the eastern region of the Helan Mountain[J]. Arid Zone Research, 2022, 39(6): 1753-1767. ] | |
[37] | 苏洋, 陈豫英, 杨侃, 等. 低空急流与贺兰山东麓暴雨过程的相关性研究[J]. 气象, 2023, 49(10): 1171-1186. |
[ Su Yang, Chen Yuying, Yang Kan, et al. Correlations between low-level jet and rainstorm process in the eastern foot of Helan Mountains[J]. Meteorological Monthly, 2023, 49(10): 1171-1186. ] | |
[38] | 曹怡清, 隆霄, 李超, 等. 低空急流对贺兰山东麓两次暴雨影响的数值模拟研究[J]. 干旱区研究, 2022, 39(6): 1739-1752. |
[ Cao Yiqing, Long Xiao, Li Chao, et al. Numerical study on the effect of low-level jet on two rainstorms on the east side of the Helan Mountain[J]. Arid Zone Research, 2022, 39(6): 1739-1752. ] |
[1] | LI Chao,LONG Xiao,CAO Yiqing,WANG Siyi,HAN Zifei,WANG Hui. Circulation pattern and LLJ characteristics of 20 rainstorm events in the eastern region of the Helan Mountain [J]. Arid Zone Research, 2022, 39(6): 1753-1767. |
[2] | CAO Yiqing,LONG Xiao,LI Chao,WANG Siyi,ZHAO Jianhua. Numerical study on the effect of low-level jet on two rainstorms on the east side of the Helan Mountain [J]. Arid Zone Research, 2022, 39(6): 1739-1752. |
[3] | QIN Yan, NIU De-Cao, KANG Jian, CAO Ge-Tu, ZHANG Si-Lian, FU Hua. Characteristics of Soil Enzyme Activities in Different Grasslands in the Western Slope of the Helan Mountain, China [J]. , 2012, 29(5): 870-877. |
|