Arid Zone Research ›› 2025, Vol. 42 ›› Issue (2): 246-257.doi: 10.13866/j.azr.2025.02.06
• Land and Water Resources • Previous Articles Next Articles
LUAN Kuifeng1,2(), XUE Jiasheng1, FENG Guiping1,2(
), HU Jiancong1, GUAN Zhihao1, ZHU Weidong1,2, YUAN Jiansheng1,2
Received:
2024-07-10
Revised:
2024-12-18
Online:
2025-02-15
Published:
2025-02-21
Contact:
FENG Guiping
E-mail:kfluan@shou.edu.cn;gpfeng@shou.edu.cn
LUAN Kuifeng, XUE Jiasheng, FENG Guiping, HU Jiancong, GUAN Zhihao, ZHU Weidong, YUAN Jiansheng. Drought characteristics of terrestrial water storage in the Yellow River Basin based on GRACE/GRACE-FO[J].Arid Zone Research, 2025, 42(2): 246-257.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 3
Drought time in Yellow River Basin"
区域 | 时间段/年-月 | 持续时间/个月 | 干旱程度 | 平均严重程度(WSD)/mm | 最大严重程度(WSD)/mm |
---|---|---|---|---|---|
黄河全域 | 2002-11—2003-04 | 6 | 轻度干旱 | 0.35 | 0.90 |
2011-03—2011-05 | 3 | 轻度干旱 | 0.46 | 0.62 | |
2013-03—2013-05 | 3 | 轻度干旱 | 0.29 | 0.58 | |
2013-09—2014-04 | 8 | 轻度干旱 | 1.27 | 2.25 | |
2014-08—2021-09 | 86 | 重度干旱 | 3.84 | 6.82 | |
2022-01—2022-12 | 12 | 中度干旱 | 3.36 | 5.04 | |
黄河上游 | 2002-08—2003-05 | 10 | 中度干旱 | 0.85 | 1.71 |
2008-05—2008-07 | 3 | 轻度干旱 | 1.07 | 1.48 | |
2009-04—2009-09 | 6 | 轻度干旱 | 0.41 | 0.80 | |
2011-02—2011-05 | 3 | 轻度干旱 | 1.00 | 1.46 | |
2012-01—2012-03 | 3 | 重度干旱 | 1.43 | 2.44 | |
2013-09—2014-04 | 8 | 中度干旱 | 0.95 | 1.73 | |
2014-08—2015-06 | 11 | 中度干旱 | 1.35 | 2.50 | |
2015-11—2016-09 | 11 | 极端干旱 | 2.78 | 5.03 | |
2016-11—2017-06 | 8 | 极端干旱 | 3.10 | 4.99 | |
2021-07—2021-11 | 5 | 极端干旱 | 2.38 | 6.37 | |
2022-01—2022-12 | 12 | 极端干旱 | 4.24 | 7.56 | |
黄河中下游 | 2022-10—2003-03 | 6 | 轻度干旱 | 1.35 | 2.22 |
2011-03—2011-05 | 3 | 轻度干旱 | 1.69 | 2.20 | |
2013-04—2013-06 | 3 | 轻度干旱 | 1.36 | 2.09 | |
2013-09—2014-04 | 8 | 轻度干旱 | 1.88 | 3.45 | |
2014-08—2015-04 | 9 | 轻度干旱 | 2.17 | 4.98 | |
2015-06—2021-10 | 77 | 极端干旱 | 6.87 | 15.44 | |
2022-04—2022-06 | 3 | 轻度干旱 | 3.26 | 4.20 | |
2022-08—2022-12 | 5 | 中度干旱 | 4.68 | 7.99 |
Tab. 4
Comparison of different drought indexes in drought events in Yellow River Basin"
时段/年-月 | WSDI | scPDSI | SPEI12 | 对应干旱程度(WSDI/scPDSI/SPEI12) |
---|---|---|---|---|
2002-11—2003-04 | -0.087 | -2.240 | -0.665 | 轻度干旱/中度干旱/轻度干旱 |
2011-03—2011-05 | -0.118 | -2.074 | -0.340 | 轻度干旱/中度干旱/轻度干旱 |
2013-03—2013-05 | -0.073 | -1.228 | 0.252 | 轻度干旱/轻度干旱/正常 |
2013-09—2014-04 | -0.324 | -1.386 | 0.057 | 轻度干旱/轻度干旱/正常 |
2014-08—2016-06 | -0.852 | -0.970 | -0.159 | 轻度干旱/正常/轻度干旱 |
[1] | Wang Fei, Wang Zongmin, Yang Haibo, et al. Study of the temporal and spatial patterns of drought in the Yellow River Basin based on SPEI[J]. Science China, 2018, 61: 1098-1111. |
[2] | 李万寿, 吴国祥. 黄河源头断流现象成因分析[J]. 水土保持通报, 2000, 20(1): 5-8. |
[Li Wanshou, Wu Guoxiang. Analysis on cause of flow-stopping in source area of the Yellow River[J]. Bulletin of Soil and Water Conservation, 2000, 20(1): 5-8. ] | |
[3] | 王作亮, 文军, 李振朝, 等. 典型干旱指数在黄河源区的适宜性评估[J]. 农业工程学报, 2019, 35(21): 186-195. |
[Wang Zuoliang, Wen Jun, Li Zhenchao, et al. Evaluation of suitability using typical drought index in source region of the Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 186-195. ] | |
[4] | 谢小伟, 幸茂仁, 汪璐璐, 等. 利用GRACE/GRACE-FO重力卫星探测黄河流域水储量能力及极端气候发生的可能性[J]. 大地测量与地球动力学, 2022, 42(12): 1269-1275. |
[Xie Xiaowei, Xing Maoren, Wang Lulu, et al. Using GRACE/GRACE-FO gravity satellite to detect the water storage capacity and the possibility of extreme climate in the Yellow River Basin[J]. Journal of Geodesy and Geodynamics, 2022, 42(12): 1269-1275. ] | |
[5] | 张建云, 王国庆, 贺瑞敏, 等. 黄河中游水文变化趋势及其对气候变化的响应[J]. 水科学进展, 2009, 20(2): 153-158. |
[Zhang Jianyun, Wang Guoqing, He Ruimin, et al. Variation trends of runoffs in the middle Yellow River Basin and its response to climate change[J]. Advances in Water Science, 2009, 20(2): 153-158. ] | |
[6] | 任保平, 张倩. 黄河流域高质量发展的战略设计及其支撑体系构建[J]. 改革, 2019(10): 26-34. |
[Ren Baoping, Zhang Qian. The strategic design and supporting system construction of high-quality development in the Yellow River Basin[J]. Reform, 2019(10):26-34. ] | |
[7] | 杨庆, 李明星, 郑子彦, 等. 7种气象干旱指数的中国区域适应性[J]. 中国科学: 地球科学, 2017, 47(3): 337-353. |
[Yang Qing, Li Mingxing, Zheng Ziyan, et al. Regional adaptability of seven meteorological drought indices in China[J]. Scientia Sinica: Terrae, 2017, 47(3): 337-353. ] | |
[8] | Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[J]. Proceedings of the 8th Conference on Applied Climatology. Boston: American Meteorological Society, 1993, 17(22): 179-183. |
[9] | Hulme M, Marsh R, Jones P. Global changes in a humidity index between 1931-1960 and 1961-1990[J]. Climate Research, 1992, 2(1): 1-22. |
[10] | Vicente-Serrano S M, Beguería Santiago, López-Moreno Juan I. A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718. |
[11] | Tapley B D. Gravity model determination from the GRACE mission[J]. Journal of the Astronautical Sciences, 2008, 56: 273-285. |
[12] | Han S. Efficient determination of global gravity field from satellite-to-satellite tracking mission[J]. Celestial Mechanics and Dynamical Astronomy, 2004, 88(1): 69-102. |
[13] | Yirdaw S Z, Snelgrove K R, Agboma C O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie[J]. Journal of Hydrology, 2008, 356: 84-92. |
[14] | Li B, Rodell M, Zaitchik B F, et al. Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe[J]. Journal of Hydrology, 2012, 446(13): 103-115. |
[15] | 阚增辉. 基于GRACE卫星的中国区域陆地水储量变化及干旱特征研究[D]. 上海: 华东师范大学, 2017. |
[Kan Zenghui. Study on the Characteristics of Regional Terrestrial Water Storage and Drought in China Based on GRACE Satellite[D]. Shanghai: East China Normal University, 2017. ] | |
[16] | 胡鹏飞, 李净, 张彦丽, 等. 黄土高原水储量的时空变化及影响因素[J]. 遥感技术与应用, 2019, 34(1): 176-186. |
[Hu Pengfei, Li Jing, Zhang Yanli, et al. Temporal and spatial variation and influencing factors of water storage on the Loess Plateau[J]. Remote Sensing Technology and Application, 2019, 34(1): 176-186. ] | |
[17] | 晋泽辉. 基于GRACE/GRACE-FO重力卫星的黄河流域蒸散发和干旱演化特征研究[D]. 西安: 长安大学, 2023. |
[Jin Zehui. Evolution Characteristics of Evapotranspiration and Drought in the Yellow River Basin Based on GRACE/GRACE-FO Gravity Satellite[D]. Xi’an: Chang’an University, 2023. ] | |
[18] | Jekeli C. Alternative Methods to Smooth the Earth’s Gravity Field[R]. Columbus: The Ohio State University, 1981. |
[19] | Bettadpur S. UTCSR Level-2 Gravity Field Product User Handbook[D]. Austin:The Universtiy of Texasat at Austin, 2007. |
[20] | Swenson S, Chambers D, Wahr J. Estimating geocenter variations from a combination of GRACE and ocean model output[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(8): B08410. |
[21] | Cheng M, Tapley B D. Variations in the earth’s oblateness during the past 28 years[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(9): B09402. |
[22] | Wahr J, Zhong S. Computations of the viscoelastic response of a 3-D compressible earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013, 192(2): 557-572. |
[23] | Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8): L08402. |
[24] | Beaudoing H, Rodell M, NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 monthly 0.25×0.25 degree V2.1[DB/OL]. https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH10_M.2.1/, , 2023-03-20. |
[25] | Houser P R, Rodell M, Jambor U, et al. The global land data assimilation system[J]. AGU Spring Meeting Abstracts, 2001, 11: 11-13. |
[26] | Wang G, Pan J, Shen C, et al. Evaluation of evapotranspiration estimates in the Yellow River Basin against the water balance method[J]. Water, 2018, 10(12): 1884-1902. |
[27] | 尼胜楠, 陈剑利, 李进, 等. 利用GRACE卫星时变重力场监测长江、黄河流域水储量变化[J]. 大地测量与地球动力学, 2014, 34(4): 49-55. |
[Ni Shengnan, Chen Jianli, Li Jin, et al. Terrestrial water storage change in the Yangtze and Yellow River Basins from GRACE time-variable gravity measurements[J]. Journal of Geodesy and Geodynamics, 2014, 34(4): 49-55. ] | |
[28] | Ferreira V, Gong Z, He X, et al. Estimating total discharge in the Yangtze River Basin using satellite-based observations[J]. Remote Sensing, 2013, 5(7): 3415-3430. |
[29] | Long D, Longuevergne L, Scanlon B R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites[J]. Water Resources Research, 2014, 50(2): 1131-1151. |
[30] | Muñoz Sabater J. ERA5-Land monthly averaged data from 1950 to present[DB/OL]. https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview, 2024-11-06. |
[31] | Wells N, Goddard S, Hayes M J. A self-calibrating Palmer Drought Severity Index[J]. Journal of Climate, 2004, 17(12): 2335-2351. |
[32] | Schrier G V D, Barichivich J, Briffa K R, et al. A scPDSI-based global data set of dry and wet spells for 1901-2009[J]. Journal of Geophysical Research Atmospheres, 2013, 118(10): 4025-4048. |
[33] | Barichivich J, Osborn T, Harris I, et al. Drought: Monitoring global drought using the self-calibrating Palmer Drought Severity Index[J]. Environmental Science, 2023, 104: 66-67. |
[34] | Vicente-Serrano S M, Santiago Beguería, Lorenzo-Lacruz J, et al. Performance of drought indices for ecological, agricultural, and hydrological applications[J]. Earth Interactions, 2012, 16(10): 1-27. |
[35] | 邓梓锋, 吴旭树, 王兆礼, 等. 基于GRACE重力卫星数据的珠江流域干旱监测[J]. 农业工程学报, 2020, 36(20): 179-187. |
[Deng Zifeng, Wu Xushu, Wang Zhaoli, et al. Drought monitoring based on GRACE data in the Pearl River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 179-187. ] | |
[36] |
刘婷婷, 朱秀芳, 郭锐, 等. ERA5再分析降水数据在中国的适用性分析[J]. 干旱区地理, 2022, 45(1): 66-79.
doi: 10.12118/j.issn.1000–6060.2021.132 |
[Liu Tingting, Zhu Xiufang, Guo Rui, et al. Applicability of ERA5 reanalysis of precipitation data in China[J]. Arid Land Geography, 2022, 45(1): 66-79. ]
doi: 10.12118/j.issn.1000–6060.2021.132 |
|
[37] | 张昊, 丁洁, 朱仟, 等. 基于GRACE的华北平原地下水干旱时空特征分析[J]. 人民长江, 2021, 52(10): 107-114. |
[Zhang Hao, Ding Jie, Zhu Qian, et al. Analysis on spatial-temporal characteristic of groundwater drought based on GRACE in North China Plain[J]. Yangtze River, 2021, 52(10): 107-114. ] | |
[38] |
阮永健, 吴秀芹. 基于GRACE和GLDAS的西北干旱区地下水资源量可持续性评价[J]. 干旱区研究, 2022, 39(3): 787-800.
doi: 10.13866/j.azr.2022.03.12 |
[Ruan Yongjian, Wu Xiuqin. Evaluation of groundwater resource sustainability based on GRACE and GLDAS in arid region of Northwest China[J]. Arid Zone Research, 2022, 39(3): 787-800. ]
doi: 10.13866/j.azr.2022.03.12 |
|
[39] | 刘玉针, 魏长寿, 李志进. 1961—2020年黄河流域干旱演变分析和大气响应[J]. 水资源开发与管理, 2022, 8(10): 7-17. |
[Liu Yuzhen, Wei Changshou, Li Zhijin. Analysis of drought evolution and atmospheric response in the Yellow River Basin from 1961 to 2020[J]. Water Resoures Development and Managment, 2022, 8(10): 7-17. ] |
[1] | LI Hao, ZHANG Lei, LIANG Xiaolei, LIU Geng. Ecological restoration zoning based on the GeoSOM network: A case study of the Shanxi section of the Yellow River Basin [J]. Arid Zone Research, 2025, 42(2): 321-332. |
[2] | ZHANG Qiaofeng, YU Hongbo, HUANG Fang. The spatiotemporal dynamics of drought and the cumulative impact on vegetation phenology in the Mongolian Plateau [J]. Arid Zone Research, 2024, 41(9): 1548-1559. |
[3] | YUAN Zheng, ZHANG Zhigao, YAN Jin, LIU Jiayi, HU Zhuyu, WANG Yun, CAI Maotang. Spatiotemporal characteristics of different grades of precipitation in Yellow River Basin from 1960 to 2020 [J]. Arid Zone Research, 2024, 41(8): 1259-1271. |
[4] | WU Siyuan, HAO Lina. Changes in vegetation cover and driving factors in the Yellow River Basin from 2001 to 2021 [J]. Arid Zone Research, 2024, 41(8): 1373-1384. |
[5] | ZHANG Hongwei, BIE Qiang, SHI Ying, SU Xiaojie, LI Xinzhang. Characteristics of vegetation cover changes in the upper reaches of the Yellow River Basin and the influencing factors [J]. Arid Zone Research, 2024, 41(8): 1385-1394. |
[6] | LI Ye, JIANG Wei, CHEN Xiaojun, WU Yingjie, WANG Sinan. Drought trends in Ordos from 1961 to 2020 based on meteorological precipitation anomaly percentage [J]. Arid Zone Research, 2024, 41(7): 1099-1111. |
[7] | ZHANG Bin, LI Congjuan, Yi Guangping, LIU Ran. Physiological, biochemical and morphological responses of Haloxylon ammodendron and Calligonum caput-medusae to drought stress [J]. Arid Zone Research, 2024, 41(7): 1177-1184. |
[8] | LI Bingjie, FAN Zhitao, QU Zhicheng, YAO Shunyu, SU Xiashu, LIU Dongwei, WANG Lixin. Evaluation and prediction of ecosystem carbon storage in the Inner Mongolia section of the Yellow River Basin based on the InVEST-PLUS model [J]. Arid Zone Research, 2024, 41(7): 1217-1227. |
[9] | SHAN Jian'an, ZHU Rui, YIN Zhenliang, YANG Huaqing, ZHANG Wei, FANG Chunshuang. Spatial and temporal variation of drought in Northwest China based on CMIP6 model [J]. Arid Zone Research, 2024, 41(5): 717-729. |
[10] | XU Chaojie, DOU Yan, MENG Qilin. Prediction of the standardized precipitation evapotranspiration index in the Xinjiang region using the EMD-GWO-LSTM model [J]. Arid Zone Research, 2024, 41(4): 527-539. |
[11] | LIU Rulong, ZHAO Yuanyuan, CHEN Guoqing, CHI Wenfeng, LIU Zhengjia. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(4): 674-683. |
[12] | TAO Jifeng, BAO Yulong, GUO Enliang, Jin Eerdemutu, Husile , BAO Yuhai. Characteristics of the spatial and temporal evolution of winter drought in Inner Mongolia over the past 40 years [J]. Arid Zone Research, 2024, 41(3): 387-398. |
[13] | XU Mingjing, FENG Qiang, LYU Meng. Tradeoffs of ecosystem services and their influencing factors: A case study of the Shanxi Section of the Yellow River Basin [J]. Arid Zone Research, 2024, 41(3): 467-479. |
[14] | ZHOU Yi, SUO Wenjiao. Spatialtemporal variation characteristics of drought in the Fenhe River Basin based on CWSI [J]. Arid Zone Research, 2024, 41(2): 191-199. |
[15] | WANG Sinan, WU Yingjie, WANG Hongzhou, LI Mingyang, WANG Fei, ZHANG Wenying, MA Xiaoming, YU Xiangqian. Spatial and temporal drivers of drought analysis using the geodetector in Ordos [J]. Arid Zone Research, 2024, 41(12): 1981-1991. |
|