Arid Zone Research ›› 2024, Vol. 41 ›› Issue (12): 2045-2055.doi: 10.13866/j.azr.2024.12.07
• Land and Water Resources • Previous Articles Next Articles
ZHANG Jiaqi1,2,3(), LIU Zhao1,2,3(), HAN Zhongqing1,2,3, WANG Lixia4, ZHANG Jinxia1,2,3, YUE Jiayin1,2,3, GUAN Zilong5
Received:
2024-04-21
Revised:
2024-09-21
Online:
2024-12-15
Published:
2024-12-20
Contact:
LIU Zhao
E-mail:zjq18991324073@163.com;lz975@163.com
ZHANG Jiaqi, LIU Zhao, HAN Zhongqing, WANG Lixia, ZHANG Jinxia, YUE Jiayin, GUAN Zilong. Trend change and prediction of blue-green water in the Jinghe River Basin under climate change[J].Arid Zone Research, 2024, 41(12): 2045-2055.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data sources"
数据名称 | 数据年份 | 分辨率 | 数据来源 | 网址 |
---|---|---|---|---|
DEM数据 | 2020年 | 30 m | 地理空间数据云 | |
土地利用数据 | 1980年、2000年、2020年 | 30 m | 中国科学院资源环境数据中心 | |
土壤类型 | 2020年 | 1 km | 世界土壤数据库 | |
实测气象数据 | 1980—2020年 | 日值 | 中国气象数据网 | |
实测径流数据 | 1980—2020年 | 日值 | 黄河水利委员会 | |
未来气候数据 | 1975—2014年(基准期) | 日值 | CMCC-ESM2模式 | |
2021—2050年(未来期) | 日值 |
Tab. 3
Sensitivity parameters of runoff and the optimal parameter group of the model in the Jinghe River Basin"
序号 | 参数 | 最优值 | 序号 | 参数 | 最优值 |
---|---|---|---|---|---|
1 | V_EVRCH | 0.337 | 18 | V_REVAPMN | 472.001 |
2 | V_TRNSRCH | 0.427 | 19 | V_RCHRG_DP | 0.365 |
3 | V_ESCO | 1.200 | 20 | V_SLSUBBSN | 37.204 |
4 | V_EPCO | 0.439 | 21 | V_FFCB | 0.786 |
5 | V_SURLAG | 55.711 | 22 | V_SHALLST | 23562.256 |
6 | V_CH_K1 | 93.200 | 23 | V_DEEPST | 34715.676 |
7 | V_CH_N1 | -3.083 | 24 | V_SFTMP | -13.548 |
8 | V_CH_N2 | -0.019 | 25 | V_SMTMP | -0.338 |
9 | V_CH_K2 | 123.386 | 26 | V_SMFMX | -2.317 |
10 | V_ALPHA_BNK | 0.346 | 27 | V_SMFMN | 7.732 |
11 | V_CN2 | 81.835 | 28 | V_TIMP | 0.308 |
12 | V_CANMX | -1.538 | 29 | V_SOL_AWC | 0.244 |
13 | V_OV_N | 18.574 | 30 | V_TLAPS | -0.926 |
14 | V_GW_DELAY | 16.481 | 31 | V_HRU_SLP | 0.599 |
15 | V_ALPHA_BF | 0.500 | 32 | V_SOL_BD | 3.356 |
16 | V_GWQMN | 1084.731 | 33 | V_SOL_K | 1367.089 |
17 | V_GW_REVAP | 0.131 |
[1] | 左其亭, 胡德胜, 窦明, 等. 基于人水和谐理念的最严格水资源管理制度研究框架及核心体系[J]. 资源科学, 2014, 36(5): 906-912. |
[Zuo Qiting, Hu Desheng, Dou Ming, et al. Framework and core system of the most stringent water resource management system based on the concept of human-water harmony[J]. Resources Science, 2014, 36(5): 906-912. ] | |
[2] | Falkenmark M, Rockstrom J. Building water resilience in the face of global change: From a blue-only to a green-blue water approach to land-water management[J]. Journal of Water Resources Planning and Management, 2010, 136(6): 606-610. |
[3] | 司鹏, 郝立生, 傅宁, 等. 河北保定百年均一化逐日气温序列的建立及其气候变化特征[J]. 大气科学学报, 2023, 46(2): 297-309. |
[Si Peng, Hao Lisheng, Fu Ning, et al. Establishment of homogenized daily temperature series for Baoding in Hebei Province and its climate characteristics over a century-long scale[J]. Transactions of Atmospheric Sciences, 2023, 46(2): 297-309. ] | |
[4] | 高姗. 中国经济发展中的生态环境保护——“金山银山不如绿水青山”的辩证思考[J]. 中国国际财经(中英文), 2018(9): 266. |
[Gao Shan. Ecological environment protection in China’s economic development: A dialectical reflection on “Gold and Silver Mountains are Better than Green Waters and Green Mountains”[J]. China International Finance (in both Chinese and English), 2018(9): 266. ] | |
[5] | Veettil A V, Mishra A K. Water security assessment using blue and green water footprint concepts[J]. Journal of Hydrology, 2016, 542: 589-602. |
[6] | 童凯, 赵银军, 胡宝清, 等. 基于SWAT模型的典型厄尔尼诺/拉尼娜年广西北部湾南流江蓝绿水评估[J]. 水电能源科学, 2023, 41(10): 46-49. |
[Tong Kai, Zhao Yinjun, Hu Baoqing, et al. Assessment of blue/green water in typical El Niňo/La Niňa years in the Nanliu River Basin, Beibu Gulf Based on SWAT model[J]. Water Resources and Power, 2023, 41(10): 46-49. ] | |
[7] | 康文东, 倪福全, 邓玉, 等. 利用SWAT模型分析乌江流域蓝绿水时空分布特征[J]. 中国农业气象, 2023, 44(6): 469-478. |
[Kang Wendong, Ni Fuquan, Deng Yu, et al. Spatial and temporal variation characteristics of blue-green water resources in Wujiang River Basin based on SWAT model[J]. Chinese Journal of Agrometeorology, 2023, 44(6): 469-478. ] | |
[8] | 齐文华, 金艺华, 尹振浩, 等. 基于SWAT模型的图们江流域蓝绿水资源供需平衡分析[J]. 生态学报, 2023, 43(8): 3116-3127. |
[Qi Wenhua, Jin Yihua, Yin Zhenhao, et al. Analysis of blue and green water scarcity based on SWAT model in the Tumen River Basin[J]. Acta Ecologica Sinica, 2023, 43(8): 3116-3127. ] | |
[9] | 康文东, 倪福全, 邓玉, 等. 乌江流域蓝绿水对气候和土地利用变化的响应[J]. 农业工程学报, 2023, 39(19): 131-140. |
[Kang Wendong, Ni Fuquan, Deng Yu, et al. Response of blue and green water to climate and land use changes: A study in the Wujiang River Basin,China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(19): 131-140. ] | |
[10] | 崔周宇, 杨肖丽, 李文婷, 等. 气候与土地利用变化下黄河源区蓝绿水量的时空响应研究[J]. 水文, 2023, 43(2): 66-71, 7. |
[Cui Zhouyu, Yang Xiaoli, Li Wenting, et al. Responses of blue and green water to climate change and landuse change in the source region of the Yellow River[J]. Journal of China Hydrology, 2023, 43(2): 66-71, 7. ] | |
[11] | Zhang Y F, Tang C J, Ye A Z, et al. Impacts of climate and landuse change on blue and green water: A study case of the upper Ganjiang River Basin[J]. Water, 2020, 12(10): 2661. |
[12] | 戴军, 胡海珠, 毛晓敏, 等. 基于CMIP6多模式预估数据的石羊河流域未来气候变化趋势分析[J]. 干旱区研究, 2023, 40(10): 1547-1562. |
[Dai Jun, Hu Haizhu, Mao Xiaomin, et al. Future climate change trends in the Shiyang River Basin based on the CMIP6 muti-model estimation data[J]. Arid Zone Research, 2023, 40(10): 1547-1562. ]
doi: 10.13866/j.azr.2023.10.02 |
|
[13] | Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1937-1958. |
[14] | 张丽霞, 陈晓龙, 辛晓歌, 等. CMIP6情景模式比较计划(Scenario MIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525. |
[Zhang Lixia, Chen Xiaolong, Xin Xiaoge, et al. Short commentary on CMIP6 scenario model intercomparison project (Scenario MIP)[J]. Climate Change Research, 2019, 15(5): 519-525. ] | |
[15] | 闵庆文, 何永涛, 李文华, 等. 基于农业气象学原理的林地生态需水量估算——以泾河流域为例[J]. 生态学报, 2004, 24(10): 2130-2135. |
[Min Qingwen, He Yongtao, Li Wenhua, et al. Estimation of forests’ecological water requirement based on agrometeorology: Taking Jinghe Watershed as an example[J]. Acta Ecologica Sinica, 2004, 24(10): 2130-2135. ] | |
[16] | 郑培龙, 李云霞, 赵阳, 等. 黄土高原泾河流域气候和土地利用变化对径流产沙的影响[J]. 水土保持研究, 2015, 22(5): 20-24. |
[Zheng Peilong, Li Yunxia, Zhao Yang, et al. Effects of climate variation and landuse change on runoff in Jinghe Basin of the Loess Plateau[J]. Research of Soil and Water Conservation, 2015, 22(5): 20-24. ] | |
[17] | 何旭强. 基于SWAT模型的黑河上游径流模拟及其对气候变化的响应[D]. 兰州: 西北师范大学, 2013. |
[He Xuqiang. Runoff Simulation and Response to Climate Change in the Upper Reaches of the HeiHe River Basin Based on SWAT Model[D]. Lanzhou: Northwest Normal University, 2013. ] | |
[18] | Onyutha C, Tabari H, Rutkowska A, et al. Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5[J]. Journal of Hydro-Environment Research, 2016, 12: 31-45. |
[19] | 吴琛, 王景才, 邵俊博, 等. CMIP6模式对淮河中上游流域气候要素模拟效果的评估研究[J]. 人民珠江, 2023, 44(10): 105-116. |
[Wu Chen, Wang Jingcai, Shao Junbo, et al. Simulation effect evaluation of CMIP6 models on climatic elements in Huai River Basin[J]. Pearl River, 2023, 44(10): 105-116. ] | |
[20] |
Yuan Z, Xu J J, Wang Y Q. Historical and future changes of blue water and green water resources in the Yangtze River source region, China[J]. Theoretical and Applied Climatology, 2019, 138(1-2): 1035-1047.
doi: 10.1007/s00704-019-02883-z |
[21] | Alashan S. Combination of modified Mann-Kendall method and Sen innovative trend analysis[J]. Engineering Reports, 2020, 2(3): e12131. |
[22] | Haddad M, Bonaduce A. On the long-term mediterranean sea level variability; proceedings[C]// Hammamet, TUNISIA:The 1st Springer Conference of the Arabian-Journal-of-Geosciences (CAJG), F Nov 12-15, 2018. |
[23] | 李蓝君. 黄土高原沟壑区典型植被作用下水平衡要素及水相关生态服务的变化机理研究[D]. 西安: 西安理工大学, 2023. |
[Li Lanjun. Study on the Change Mechanism of Water Balance Component and Water-related Ecosystem Services under Typical Vegetation Species in the Gully Region of the Loess Plateau[D]. Xi’an: Xi’an University of Technology, 2023. ] | |
[24] | 豆明玉, 段克勤, 石培宏, 等. 基于CMIP6多模式的黄土高原气温变化模拟评估及情景预估[J]. 水土保持研究, 2024, 31(2): 158-167. |
[Dou Mingyu, Duan Keqin, Shi Peihong, et al. Historical evaluation and scenario prediction of temperature changes the Loess Plateau based on CMIP6 multimodels[J]. Research of Soil and Water Conservation, 2024, 31(2): 158-167. ] | |
[25] | 刘欢. 典型流域径流及其组分变化的归因分析与预测[D]. 西安: 西安理工大学, 2023. |
[Liu Huan. Attributive Analysis and Prediction of Typical Watershed Runoff and Its Component Changes[D]. Xi’an: Xi’an University of Technology, 2023. ] | |
[26] | 朱天生. 未来气候模式下黄河流域径流变化归因研究[D]. 郑州: 郑州大学, 2022. |
[Zhu Tiansheng. Attribution Analysis of Runoff Change in the Yellow River Basin under Climate Model[D]. Zhengzhou: Zhengzhou University, 2022. ] |
[1] | LYU Zhuangzhuang, QIAO Qingqing, DONG Sunyi, WANG Dong. Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming [J]. Arid Zone Research, 2024, 41(8): 1309-1322. |
[2] | ZHOU Jie, WANG Xuhu, DU Weibo, ZHOU Xiaolei, YANG Jie, ZAHNG Xiaowei. Prediction of potential distribution area of Picea schrenkiana under the background of climate change [J]. Arid Zone Research, 2024, 41(7): 1167-1176. |
[3] | LIANG Shuanghe, NIU Zuirong, JIA Ling. Analysis of runoff changes and attribution in the main stream of Zuli River in the past 65 years [J]. Arid Zone Research, 2024, 41(6): 928-939. |
[4] | TANG Kexin, GUO Jianbin, HE Liang, CHEN Lin, WAN Long. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands [J]. Arid Zone Research, 2024, 41(6): 964-973. |
[5] | ZHANG Qian, CAO Guangchao, ZHANG Lele, ZHAO Meiliang. Spatiotemporal changes in vegetation greenness on the southern slopes of the Qilian Mountains and their responses to climate change and human activities [J]. Arid Zone Research, 2024, 41(12): 2143-2153. |
[6] | YANG Fei, ZHANG Wentao, ZHANG Feimin, WANG Chenghai. Climate characteristics and variation in the Qilian Mountains from 1961 to 2022 [J]. Arid Zone Research, 2024, 41(10): 1627-1638. |
[7] | ZHANG Yin, SUN Congjian, LIU Geng, CHAO Jinlong, GENG Tianwei. Response of NDSI in the Tarim River Basin mountainous areas to climate change over the past 20 years [J]. Arid Zone Research, 2024, 41(10): 1639-1648. |
[8] | CHENG Qian, QI Yue, LIU Mingchun, ZHANG Peng, DING Wenkui, LI Xingyu, REN Liwen, YANG Hua. Characteristics of ecology and water resource changes in the Shiyang River Basin under the background of climate change and human activities [J]. Arid Zone Research, 2024, 41(10): 1672-1684. |
[9] | FAN Yuke, REN Ju, WANG Runlong, ZHOU Dongdong, PAN Zikai, ZHANG Xiaowei, ZHOU Xiaolei. Prediction of potential suitable distribution area of Pinus bungeana in China under the background of climate change [J]. Arid Zone Research, 2024, 41(10): 1719-1730. |
[10] | ZHAO Yuqi, WEI Tianxing. Changes in vegetation cover and influencing factors in typical counties of the Loess Plateau from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(1): 147-156. |
[11] | HU Guanglu,TAO Hu,JIAO Jiao,BAI Yuanru,CHEN Haizhi,MA Jin. Runoff trend and attribution analysis of the Zhengyi Gorge in the middle reaches of the Heihe River [J]. Arid Zone Research, 2023, 40(9): 1414-1424. |
[12] | ZHOU Xiaodong, CHANG Shunli, WANG Guanzheng, ZHANG Yutao, YU Shulong, ZHANG Tongwen. Radial growth response of Picea schrenkiana to climate change in the middle section of the northern slope of the Tianshan Mountains [J]. Arid Zone Research, 2023, 40(8): 1215-1228. |
[13] | MENG Chengfeng, ZHONG Tao, ZHENG Jianghua, WANG Nan, LIU Zexuan, REN Xiangyuan. Analysis of temporal and spatial characteristics and driving forces of Kunlun glacial lakes [J]. Arid Zone Research, 2023, 40(7): 1094-1106. |
[14] | ZHAO Yanfen, PAN Borong. Potential geographical distributions of Tugarinovia in China under climate change scenarios [J]. Arid Zone Research, 2023, 40(6): 949-957. |
[15] | YAO Chunyan, LIU Honghu, LIU Jing. Variation of runoff and sediment in the headwaters of the Yangtze River from 1980 to 2020 [J]. Arid Zone Research, 2023, 40(5): 726-736. |
|