Arid Zone Research ›› 2024, Vol. 41 ›› Issue (11): 1908-1920.doi: 10.13866/j.azr.2024.11.11
• Ecology and Environment • Previous Articles Next Articles
WANG Chengwu(), YAO Liangjie(), WANG Zhoufeng, ZHANG Qiao, XIE Liang
Received:
2024-06-13
Revised:
2024-09-19
Online:
2024-11-15
Published:
2024-11-29
Contact:
YAO Liangjie
E-mail:200131010008@swpu.edu.cn;202221000148@stu.swpu.edu.cn
WANG Chengwu, YAO Liangjie, WANG Zhoufeng, ZHANG Qiao, XIE Liang. Landscape ecological risk assessment and driving factors analysis in the Three River Source Region from 2000 to 2020[J].Arid Zone Research, 2024, 41(11): 1908-1920.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Calculation and significance of landscape pattern index"
指数名称 | 计算公式 | 参数意义 |
---|---|---|
景观生态风险指数(ERIx) | ERIx为第x个评价单元的景观生态风险指数;Sx和Sxi分别为评价单元x的总面积和其中第i类景观的面积;Ri为第i类景观的损失度指数;N为评价单元中景观类型的数量 | |
景观损失度(Ri) | Wi为景观干扰度指数;Vi为景观脆弱度指数 | |
景观脆弱度(Vi) | 借鉴已有研究成果[ | 景观脆弱度衡量不同景观抵抗外界干扰的能力 |
景观干扰度(Wi) | x、y、z分别为3类指数的权重,且权重之和为1。结合已有研究和三江源地区特征[ | |
景观破碎度(Ei) | ni为景观i的斑块数;Ai为景观i的面积。破碎度表征景观被分割的破碎程度,反映景观空间结构的复杂性,在一定程度上反映了景观的受干扰程度 | |
景观分离度(Di) | A为景观总面积;Ai为景观i的面积;ni为景观i的斑块数。表征某一景观类型中不同斑块分布的离散程度 | |
景观分维数(Fi) | pi为景观i的周长;Ai为景观i的面积。表征斑块形状的复杂程度 |
Tab. 3
Statistics of ecological risk zoning area from 2000 to 2020"
类型 | 2000年 | 2005年 | 2010年 | 2015年 | 2020年 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | |||||
低风险区 | 59243.1 | 18.54 | 53793.6 | 16.83 | 41183.7 | 12.89 | 48140.4 | 15.07 | 41852.7 | 13.10 | ||||
中低风险区 | 111140.4 | 34.78 | 135208.5 | 42.31 | 129369.6 | 40.49 | 126420.3 | 39.56 | 123225.2 | 38.56 | ||||
中风险区 | 83715.2 | 26.20 | 77350.5 | 24.21 | 78732.1 | 24.64 | 87060.9 | 27.25 | 93922.2 | 29.39 | ||||
中高风险区 | 50384.5 | 15.77 | 43305.6 | 13.55 | 52432.6 | 16.41 | 47276.9 | 14.80 | 56865.3 | 17.80 | ||||
高风险区 | 15066.5 | 4.72 | 9891.4 | 3.10 | 17831.6 | 5.58 | 10651.1 | 3.33 | 3684.2 | 1.15 |
Tab. 4
Statistics of the area of ecological risk level change from 2000 to 2020"
类型 | 2000—2005年 | 2005—2010年 | 2010—2015年 | 2015—2020年 | 2000—2020年 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | |||||
下降 | 129775.7 | 40.61 | 13868.2 | 4.34 | 100721.6 | 31.52 | 45867.8 | 14.35 | 85611.0 | 26.79 | ||||
稳定 | 101413.7 | 31.74 | 190564.2 | 59.64 | 174994.2 | 54.76 | 219596.6 | 68.72 | 137913.8 | 43.16 | ||||
上升 | 88360.2 | 27.65 | 115117.2 | 36.02 | 43833.8 | 13.72 | 54085.1 | 16.93 | 96024.8 | 30.05 |
Tab. 7
Comparison of single-factor detections in key areas"
类型(贡献率/%) | 高程 | 坡度 | 气温 | 降雨 | NDVI | 土壤可蚀性 | 邻道路距离 | 人类活动强度 |
---|---|---|---|---|---|---|---|---|
改善A | 16.9 | 16.0 | 10.3 | 9.8 | 22.3 | 13.1 | 6.3 | 5.2 |
改善B | 15.2 | 14.6 | 15.5 | 9.2 | 25.2 | 11.9 | 4.4 | 3.9 |
恶化C | 12.3 | 13.5 | 10.8 | 8.3 | 28.1 | 10.8 | 8.3 | 7.9 |
恶化D | 13.1 | 11.7 | 9.2 | 8.3 | 25.8 | 10.7 | 6.0 | 6.5 |
恶化E | 11.5 | 13.2 | 10.0 | 7.5 | 28.9 | 11.0 | 7.0 | 7.8 |
Tab. 8
Statistics on the change of landscape characteristic index and area proportion in key areas"
区域 | 景观类型 | 景观破碎度 | 景观分离度 | 景观分维数 | 景观脆弱度 | 面积占比/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000年 | 2020年 | 2000年 | 2020年 | 2000年 | 2020年 | 2000年 | 2020年 | 2000年 | 2020年 | ||||||
改善A | 低-草地 | 0.70 | 0.47 | 0.80 | 0.57 | 2.10 | 2.06 | 0.07 | 0.07 | 27.29 | 36.17 | ||||
中-草地 | 1.31 | 0.30 | 1.15 | 0.48 | 2.16 | 2.01 | 0.04 | 0.04 | 24.54 | 32.29 | |||||
高-草地 | 0.41 | 2.33 | 0.58 | 3.74 | 2.04 | 2.22 | 0.02 | 0.02 | 30.91 | 4.16 | |||||
冰川 | 1.93 | 1.56 | 2.73 | 3.20 | 2.15 | 2.09 | 0.16 | 0.16 | 6.48 | 3.80 | |||||
荒地 | 2.16 | 0.41 | 2.27 | 0.66 | 2.21 | 2.04 | 0.20 | 0.20 | 10.46 | 23.23 | |||||
改善B | 低-草地 | 0.25 | 0.02 | 0.35 | 0.09 | 1.95 | 1.70 | 0.07 | 0.07 | 50.94 | 78.91 | ||||
中-草地 | 0.52 | 3.12 | 0.64 | 3.80 | 2.03 | 2.26 | 0.04 | 0.04 | 31.42 | 5.41 | |||||
湖泊 | 0.40 | 0.38 | 2.23 | 2.02 | 1.59 | 1.59 | 0.11 | 0.11 | 2.02 | 2.31 | |||||
冰川 | 0.23 | 0.09 | 0.88 | 0.58 | 1.78 | 1.74 | 0.16 | 0.16 | 7.51 | 7.02 | |||||
荒地 | 1.70 | 1.44 | 2.43 | 2.38 | 2.18 | 2.18 | 0.20 | 0.20 | 7.20 | 6.32 | |||||
恶化C | 林地 | 1.01 | 0.95 | 1.14 | 1.10 | 2.10 | 2.10 | 0.09 | 0.09 | 19.33 | 19.83 | ||||
低-草地 | 2.11 | 0.87 | 4.44 | 0.98 | 2.22 | 2.08 | 0.07 | 0.07 | 2.68 | 22.76 | |||||
中-草地 | 3.79 | 0.61 | 3.69 | 0.67 | 2.27 | 2.07 | 0.04 | 0.04 | 6.96 | 33.40 | |||||
高-草地 | 0.05 | 1.10 | 0.14 | 1.10 | 1.89 | 2.12 | 0.02 | 0.02 | 70.46 | 22.61 | |||||
荒地 | 5.32 | 2.86 | 17.07 | 7.54 | 2.51 | 2.30 | 0.20 | 0.20 | 0.46 | 1.26 | |||||
恶化D | 低-草地 | 0.72 | 0.21 | 0.75 | 0.30 | 2.10 | 2.00 | 0.07 | 0.07 | 31.54 | 56.82 | ||||
中-草地 | 0.27 | 0.77 | 0.36 | 0.72 | 2.05 | 2.05 | 0.04 | 0.04 | 52.35 | 37.02 | |||||
高-草地 | 1.20 | 0.00 | 1.43 | 0.00 | 2.16 | 0.00 | 0.02 | 0.02 | 14.61 | 0.00 | |||||
荒地 | 6.40 | 3.93 | 10.88 | 4.07 | 2.56 | 2.34 | 0.20 | 0.20 | 1.35 | 5.92 | |||||
恶化E | 林地 | 3.80 | 2.90 | 4.19 | 2.91 | 2.31 | 2.25 | 0.09 | 0.09 | 5.43 | 8.54 | ||||
低-草地 | 5.09 | 3.06 | 13.13 | 5.06 | 2.55 | 2.30 | 0.07 | 0.07 | 0.74 | 2.99 | |||||
中-草地 | 3.53 | 0.82 | 5.04 | 0.86 | 2.31 | 2.08 | 0.04 | 0.04 | 3.47 | 27.48 | |||||
高-草地 | 0.00 | 0.09 | 0.02 | 0.19 | 1.69 | 1.93 | 0.02 | 0.02 | 90.11 | 60.68 |
[1] | 左婵, 王军邦, 张秀娟, 等. 三江源国家公园植被净初级生产力变化趋势及影响因素[J]. 生态学报, 2022, 42(14): 5559-5573. |
[Zuo Chan, Wang Junbang, Zhang Xiujuan, et al. Changes and influencing factors of vegetation net primary productivity in the Sanjiangyuan National Park[J]. Acta Ecologica Sinica, 2022, 42(14): 5559-5573. ] | |
[2] |
彭建, 党威雄, 刘焱序, 等. 景观生态风险评价研究进展与展望[J]. 地理学报, 2015, 70(4): 664-677.
doi: 10.11821/dlxb201504013 |
[Peng Jian, Dang Weixiong, Liu Yanxu, et al. Review on landscape ecological risk assessment[J]. Acta Geographica Sinica, 2015, 70(4): 664-677. ]
doi: 10.11821/dlxb201504013 |
|
[3] | Beanlands G E, Duinker P N. An ecological framework for environmental impact assessment in Canada[J]. Journal of Environmental Management, 1984, 18(3): 267-277. |
[4] | Heggem D T, Edmonds C M, Neale A C, et al. A landscape ecology assessment of the Tensas River Basin[J]. Environmental Monitoring and Assessment, 2000, 64(1): 41-54. |
[5] | Landis W G. Uncertainty in the extrapolation from individual effects to impacts upon landscapes[J]. Human and Ecological Risk Assessment: An International Journal, 2002, 8(1): 193-204. |
[6] | Estoque R C, Murayama Y, Lasco R D, et al. Changes in the landscape pattern of the La Mesa Watershed-the last ecological frontier of Metro Manila, Philippines[J]. Forest Ecology and Management, 2018, 430(42): 280-290. |
[7] | 殷贺, 王仰麟, 蔡佳亮, 等. 区域生态风险评价研究进展[J]. 生态学杂志, 2009, 28(5): 969-975. |
[Yin He, Wang Yanglin, Cai Jialiang, et al. Regional ecological risk assessment: Its research progress and prospect[J]. Journal of Ecology, 2009, 28(5): 969-975. ] | |
[8] |
曹祺文, 张曦文, 马洪坤, 等. 景观生态风险研究进展及基于生态系统服务的评价框架: ESRISK[J]. 地理学报, 2018, 73(5): 843-855.
doi: 10.11821/dlxb201805005 |
[Cao Qiwen, Zhang Xiwen, Ma Hongkun, et al. Review of landscape ecological risk and an assessment framework based on ecological services: ESRISK[J]. Acta Geographica Sinica, 2018, 73(5): 843-855. ]
doi: 10.11821/dlxb201805005 |
|
[9] | 潘竟虎, 刘晓. 疏勒河流域景观生态风险评价与生态安全格局优化构建[J]. 生态学杂志, 2016, 35(3): 791-799. |
[Pan Jinghu, Liu Xiao. Landscape ecological risk assessment and landscape security pattern optimization in Shule River Basin[J]. Chinese Journal of Ecology, 2016, 35(3): 791-799. ] | |
[10] | 陈丁楷, 石龙宇. 基于土地利用变化的雄安新区景观生态风险评价与预测[J]. 生态经济, 2021, 37(11): 224-229. |
[Chen Dingkai, Shi Longyu. The Landscape ecological risk assessment and prediction for Xiong’an New Area based on land use change[J]. Ecological Economy, 2021, 37(11): 224-229. ] | |
[11] | 于婧, 汤昪, 陈艳红, 等. 山水资源型城市景观生态风险评价及生态安全格局构建——以张家界市为例[J]. 生态学报, 2022, 42(4): 1290-1299. |
[Yu Jing, Tang Bian, Chen Yanhong, et al. Landscape ecological risk assessment and ecological security pattern construction in landscape resource-based city: A case study of Zhangjiajie City[J]. Acta Ecologica Sinica, 2022, 42(4): 1290-1299. ] | |
[12] | 娄妮, 王志杰, 何嵩涛. 基于景观格局的阿哈湖国家湿地公园景观生态风险评价[J]. 水土保持研究, 2020, 27(1): 233-239. |
[Lou Ni, Wang Zhijie, He Songtao. Assessment on ecological risk of Aha Lake National Wetland Park based on landscape pattern[J]. Research on Soil and Water Conservation, 2020, 27(1): 233-239. ] | |
[13] | 王娟, 崔保山, 刘杰, 等. 云南澜沧江流域土地利用及其变化对景观生态风险的影响[J]. 环境科学学报, 2008, 28(2): 269-277. |
[Wang Juan, Cui Baoshan, Liu Jie, et al. The effect of land use and its change on ecological risk in the Lancang River watershed of Yunnan Province at the landscape scale[J]. Acta Scientiae Circumstantiae, 2008, 28(2): 269-277. ] | |
[14] | 康紫薇, 张正勇, 位宏, 等. 基于土地利用变化的玛纳斯河流域景观生态风险评价[J]. 生态学报, 2020, 40(18): 6472-6485. |
[Kang Ziwei, Zhang Zhengyong, Wei Hong, et al. Landscape ecological risk assessment in Manas River Basin based on land use change[J]. Acta Ecologica Sinica, 2020, 40(18): 6472-6485. ] | |
[15] |
刘焱序, 王仰麟, 彭建, 等. 基于生态适应性循环三维框架的城市景观生态风险评价[J]. 地理学报, 2015, 70(7): 1052-1067.
doi: 10.11821/dlxb201507003 |
[Liu Yanxu, Wang Yanglin, Peng Jian, et al. Urban landscape ecological risk assessment based on the 3D framework of adaptive cycle[J]. Acta Geographica Sinica, 2015, 70(7): 1052-1067. ]
doi: 10.11821/dlxb201507003 |
|
[16] | 刘世梁, 孙永秀, 赵海迪, 等. 基于多源数据的三江源区生态工程建设前后草地动态变化及驱动因素研究[J]. 生态学报, 2021, 41(10): 3865-3877. |
[Liu Shiliang, Sun Yongxiu, Zhao Haidi, et al. Grassland dynamics and their driving factors associated with ecological construction projects in the Three-River Headwaters Region based on multi-source data[J]. Acta Ecologica Sinica, 2021, 41(10): 3865-3877. ] | |
[17] | 张晓瑶, 虞虎, 张潇, 等. 基于多源数据的三江源国家公园土地生态安全综合评价[J]. 生态学报, 2022, 42(14): 5665-5676. |
[Zhang Xiaoyao, Yu Hu, Zhang Xiao, et al. Comprehensive evaluation of land ecological security in the Sanjiangyuan National Park based on multi-source data[J]. Acta Ecologica Sinica, 2022, 42(14): 5665-5676. ] | |
[18] | 杨达. 三江源不同生态地理区NDVI时空变化特征与驱动因素分析[D]. 成都: 成都理工大学, 2021. |
[Yang Da. Spatio-temporal Variation Characteristics and Driving Factors of NDVI in Different Eco-geographical Regions in Three River-Headwater[D]. Chengdu: Chengdu University of Technology, 2021. ] | |
[19] |
曹巍, 刘璐璐, 吴丹. 三江源区土壤侵蚀变化及驱动因素分析[J]. 草业学报, 2018, 27(6): 10-22.
doi: 10.11686/cyxb2017359 |
[Cao Wei, Liu Lulu, Wu Dan. Soil erosion changes and driving factors in the Three-River Headwaters region[J]. Acta Prataculturae Sinica, 2018, 27(6): 10-22. ]
doi: 10.11686/cyxb2017359 |
|
[20] | Song Y Z, Wang J F, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5): 593-610. |
[21] | 白晓兰, 魏加华, 解宏伟. 三江源区干湿变化特征及其影响[J]. 生态学报, 2017, 37(24): 8397-8410. |
[Bai Xiaolan, Wei Jiahua, Xie Hongwei. Characteristics of wetness/dryness variation and their influences in the Three-River Headwaters region[J]. Acta Ecologica Sinica, 2017, 37(24): 8397-8410. ] | |
[22] | 姚秀萍, 谢启玉, 黄逸飞. 中国三江源地区降水研究的进展与展望[J]. 大气科学学报, 2022, 45(5): 688-699. |
[Yao Xiuping, Xie Qiyu, Huang Yifei. Advances and prospects on the study of precipitation in the Three River Source Region in China[J]. Transactions of Atmospheric Sciences, 2022, 45(5): 688-699. ] | |
[23] |
Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925
doi: 10.5194/essd-13-3907-2021 |
[24] | Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946. |
[25] | 章文波. 青藏高原土壤可蚀性因子数据(2015—2024)[DB/OL]. 国家青藏高原数据中心, 2024. |
[Zhang Wenbo. The data on soil erodibility factor in the Qinghai-Tibet Plateau (2015-2024)[DB/OL]. National Tibetan Plateau/Third Pole Environment Data Center, 2024. ] | |
[26] | Cao R Y, Xu Z C, Chen Y, et al. Reconstructing high-spatiotemporal-resolution (30 m and 8-Days) NDVI time-series data for the Qinghai-Tibetan Plateau from 2000-2020[J]. Remote Sensing, 2022, 14(15): 3648. |
[27] | 刘海猛. 青藏高原1 km分辨率人类活动强度数据集(2000—2020)[DB/OL]. 国家青藏高原数据中心, 2023. |
[Liu Haimeng. Human activity intensity dataset of the Qinghai-Tibet Plateau (2000-2020)[DB/OL]. National Tibetan Plateau/Third Pole Environment Data Center, 2023. ] | |
[28] |
苏海民, 何爱霞. 基于RS和地统计学的福州市土地利用分析[J]. 自然资源学报, 2010, 25(1): 91-99.
doi: 10.11849/zrzyxb.2010.01.010 |
[Su Haimin, He Aixia. Analysis of land use based on RS and Geostatistics in Fuzhou City[J]. Journal of Natural Resources, 2010, 25(1): 91-99. ]
doi: 10.11849/zrzyxb.2010.01.010 |
|
[29] |
谢小平, 陈芝聪, 王芳, 等. 基于景观格局的太湖流域生态风险评估[J]. 应用生态学报, 2017, 28(10): 3369-3377.
doi: 10.13287/j.1001-9332.201710.016 |
[Xie Xiaoping, Chen Zhicong, Wang Fang, et al. Ecological risk assessment of Taihu Lake Basin based on landscape pattern[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3369-3377. ]
doi: 10.13287/j.1001-9332.201710.016 |
|
[30] | 韦晶, 郭亚敏, 孙林, 等. 三江源地区生态环境脆弱性评价[J]. 生态学杂志, 2015, 34(7): 1968-1975. |
[Wei Jing, Guo Yamin, Sun Lin, et al. Evaluation of ecological environment vulnerability in the Three River Source Region[J]. Chinese Journal of Ecology, 2015, 34(7): 1968-1975. ] | |
[31] |
高彬嫔, 李琛, 吴映梅, 等. 川滇生态屏障区景观生态风险评价及影响因素[J]. 应用生态学报, 2021, 32(5): 1603-1613.
doi: 10.13287/j.1001-9332.202105.018 |
[Gao Binpin, Li Chen, Wu Yingmei, et al. Landscape ecological risk assessment and influencing factors in ecological conservation area in Sichuan-Yunnan Provinces, China[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1603-1613. ]
doi: 10.13287/j.1001-9332.202105.018 |
|
[32] | 许妍, 马明辉, 高俊峰. 流域生态风险评估方法研究——以太湖流域为例[J]. 中国环境科学, 2012, 32(9): 1693-1701. |
[Xu Yan, Ma Minghui, Gao Junfeng. The evaluation method of ecological risk assessment based on watershed scale——Take the Taihu watershed as example[J]. China Environmental Science, 2012, 32(9): 1693-1701. ] | |
[33] | 巩杰, 谢余初, 赵彩霞, 等. 甘肃白龙江流域景观生态风险评价及其时空分异[J]. 中国环境科学, 2014, 34(8): 2153-2160. |
[Gong Jie, Xie Yuchu, Zhao Caixia, et al. Landscape ecological risk assessment and its spatiotemporal variation of the Bailongjiang watershed, Gansu[J]. China Environmental Science, 2014, 34(8): 2153-2160. ] | |
[34] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
doi: 10.11821/dlxb201701010 |
|
[35] |
王洁, 摆万奇, 田国行. 青藏高原景观生态风险的时空特征[J]. 资源科学, 2020, 42(9): 1739-1749.
doi: 10.18402/resci.2020.09.09 |
[Wang Jie, Bai Wanqi, Tian Guoxing. Spatiotemporal characteristics of landscape ecological risks on the Tibetan Plateau[J]. Resources Science, 2020, 42(9): 1739-1749. ]
doi: 10.18402/resci.2020.09.09 |
|
[36] | Lu Z B, Song Q, Zhao J Y. Evolution of landscape ecological risk and identification of critical areas in the Yellow River Source Area based on LUCC[J]. Sustainability, 2023, 15(12): 9749. |
[1] | ZHANG Wenrui, SUN Dongyuan, WANG Yike, YANG Jun, LAN Lijun, JIN Hujia, XU Yu. Coupling relationship and spatiao-temporal differentiation of the water resources-ecological environment-social economic system in the Hexi Corridor [J]. Arid Zone Research, 2024, 41(9): 1527-1537. |
[2] | WU Siyuan, HAO Lina. Changes in vegetation cover and driving factors in the Yellow River Basin from 2001 to 2021 [J]. Arid Zone Research, 2024, 41(8): 1373-1384. |
[3] | YANG Rongqin, XIAO Yulei, CHI Miaomiao, MU Zhenxia. Temporal and spatial variations of human activities and landscape ecological risks in the Tarim River Basin, China, during the last 20 years [J]. Arid Zone Research, 2024, 41(6): 1010-1020. |
[4] | ZHOU Jianwei, LUO Jun, MA Xueyang. Spatio-temporal evolution and driving factors of land use and ecosystem service value in the Lhasa River Basin, China [J]. Arid Zone Research, 2024, 41(6): 1021-1031. |
[5] | SI Qi, FAN Haoran, DONG Wenming, LIU Xinping. Landscape ecological risk assessment and prediction for the Yarkant River Basin, Xinjiang, China [J]. Arid Zone Research, 2024, 41(4): 684-696. |
[6] | XU Mingjing, FENG Qiang, LYU Meng. Tradeoffs of ecosystem services and their influencing factors: A case study of the Shanxi Section of the Yellow River Basin [J]. Arid Zone Research, 2024, 41(3): 467-479. |
[7] | CHENG Qiulian, LIU Jie, YANG Zhiwei, ZHANG Tianyi, WANG Bin. Spatial distribution and factor analysis of avalanche in the Aerxiangou section of the Duku expressway [J]. Arid Zone Research, 2024, 41(2): 220-229. |
[8] | LIU Yidan, YAO Xiaojun, LI Zongxing, HU Jiayu. Impacts of climate change and land use/cover change on the net primary productivity of vegetation in Hexi Region, Northwest China [J]. Arid Zone Research, 2024, 41(1): 169-180. |
[9] | REN Liwen, WANG Xingtao, LIU Mingchun, WANG Dawei. Temporal and Spatial changes and the driving factors of vegetation NPP in Shiyang River Basin [J]. Arid Zone Research, 2023, 40(5): 818-828. |
[10] | CHEN Jiawei, CHU Jianmin, GAN Honghao, XU Lei, GONG Shuai, LIU Hao, WANG Yingxin, YANG Hongxiao, XU Xiaoqing, QI Danhui. Asociation characteristics of Amygdalus pedunculata and the environmental factors driving them in Otindag Sandy Land [J]. Arid Zone Research, 2023, 40(5): 777-784. |
[11] | DONG Hanlin, WANG Wenting, XIE Yun, Aydana YESINALI, JIANG Yuantian, XU Jiaqi. Climate dry-wet conditions, changes, and their driving factors in Xinjiang [J]. Arid Zone Research, 2023, 40(12): 1875-1884. |
[12] | HUANG Xiaomei, QI Dongmei, LI Di, SUN Yi, LYU Chunyue. Annual relationship between the West Asian subtropical westerly jet and summer precipitation over the Three River Source region [J]. Arid Zone Research, 2023, 40(1): 1-8. |
[13] | ZHANG Haochen,SA Chula,MENG Fanhao,LUO Min,WANG Mulan,GAO Hongdou,ADIYA Saruulzaya. Dynamic changes and driving factors of the surface freeze-thaw index in Inner Mongolia [J]. Arid Zone Research, 2022, 39(6): 1996-2008. |
[14] | YAO Jia,CHEN Qihui,LI Qiongfang,CUI Gang,ZHANG Liangjing. Spatial and temporal variability of evapotranspiration and influencing factors in the Ili River-Balkhash Lake Basin [J]. Arid Zone Research, 2022, 39(5): 1564-1575. |
[15] | HOU Qingqing,CHEN Ying,PEI Tingting,JI Zhenxia,XIE Baopeng. Analysis of cultivated land’s spatio-temporal changes and influencing factors in Gansu Province in recent 25 years [J]. Arid Zone Research, 2022, 39(3): 955-967. |
|