Arid Zone Research ›› 2023, Vol. 40 ›› Issue (2): 292-302.doi: 10.13866/j.azr.2023.02.13
• Ecology and Environment • Previous Articles Next Articles
XU Tao1(),YU Huan1(),KONG Bo2,QIU Xia1,3,HU Mengke1,LING Pengfei1
Received:
2022-07-09
Revised:
2022-11-27
Online:
2023-02-15
Published:
2023-03-08
XU Tao, YU Huan, KONG Bo, QIU Xia, HU Mengke, LING Pengfei. Spatial heterogeneity of gravel size in Northern Tibetan Plateau[J].Arid Zone Research, 2023, 40(2): 292-302.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data source and introduction"
数据类型 | 数据名称 | 数据来源 | 分辨率 |
---|---|---|---|
自然因素 | DEM(X1) | 国家地球系统科学数据中心(http:www.geodata.cn) | 30 m |
年NDVI(X2) | 中国科学院资源环境科学与数据中心(http:www.resdc.cn) | 1000 m | |
土地利用类型(X3) | 国家地球系统科学数据中心(http:www.geodata.cn) | 30 m | |
土壤类型(X4) | 国家地球系统科学数据中心(http:www.geodata.cn) | 1000 m | |
植被类型(X5) | 中国科学院资源环境科学与数据中心(http:www.resdc.cn) | 1000 m | |
年均降水(X6) | 中国科学院资源环境科学与数据中心(http:www.resdc.cn) | 500 m | |
人文因素 | 人口密度(X7) | 中国科学院资源环境科学与数据中心(http:www.resdc.cn) | 100 m |
夜间灯光强度(X8) | 美国国家地球物理数据中心(https:www.ngdc.noaa.gov) | 500 m |
Tab. 2
Characteristic parameters of spatial variogram of gravel size"
方向 | 块金值(C0) | 偏基台值(C) | 块基比(C0/C0+C) | 变程(a)/km | 决定系数(R2) | |
---|---|---|---|---|---|---|
各向同性 | - | 0.391 | 0.708 | 0.356 | 26.178 | 0.981 |
各向异性 | 0° | 0.537 | 1.185 | 0.312 | 69.500 | 0.500 |
22.5° | 0.534 | 1.330 | 0.286 | 76.500 | 0.788 | |
45° | 0.539 | 1.195 | 0.311 | 69.500 | 0.585 | |
67.5° | 0.544 | 1.234 | 0.306 | 90.420 | 0.802 | |
90° | 0.617 | 1.203 | 0.339 | 62.840 | 0.505 | |
112.5° | 0.606 | 1.347 | 0.310 | 70.240 | 0.833 | |
135° | 0.601 | 1.195 | 0.335 | 64.360 | 0.509 | |
157.5° | 0.555 | 1.503 | 0.270 | 110.000 | 0.801 |
Tab. 4
Interaction between impact factors of gravel size"
C | A+B | 结果 | 解释 |
---|---|---|---|
X2∩X3=0.56 | X2(0.41)+X3(0.27) | C >max(A,B) | 双因子增强 |
X2∩X5=0.46 | X2(0.41)+X5(0.17) | C >max(A,B) | 双因子增强 |
X2∩X6=0.46 | X2(0.41)+X6(0.13) | C >max(A,B) | 双因子增强 |
X2∩X7=0.47 | X2(0.41)+X7(0.16) | C >max(A,B) | 双因子增强 |
X3∩X5=0.42 | X3(0.27)+X5(0.17) | C >max(A,B) | 双因子增强 |
X3∩X6=0.47 | X3(0.27)+X6(0.13) | C>A+B | 非线性增强 |
X3∩X7=0.39 | X3(0.27)+X7(0.16) | C >max(A,B) | 双因子增强 |
X5∩X6=0.28 | X5(0.17)+X6(0.13) | C >max(A,B) | 双因子增强 |
X5∩X7=0.26 | X5(0.17)+X7(0.16) | C >max(A,B) | 双因子增强 |
X6∩X7=0.27 | X6(0.13)+X7(0.16) | C >max(A,B) | 双因子增强 |
[1] | 王景升, 姚帅臣, 普穷, 等. 藏北高原草地群落的数量分类与排序[J]. 生态学报, 2016, 36(21): 6889-6896. |
[Wang Jingsheng, Yao Shuaichen, Pu Qiong, et al. Quantitative classification and ordination of grassland communities in northern Tibetan Plateau[J]. Acta Ecologica Sinica, 2016, 36(21): 6889-6896.] | |
[2] |
王景升, 张宪洲, 赵玉萍, 等. 羌塘高原高寒草地生态系统生产力动态[J]. 应用生态学报, 2010, 21(6): 1400-1404.
pmid: 20873612 |
[Wang Jingsheng, Zhang Xianzhou, Zhao Yuping, et al. Productivity dynamics of alpine grassland ecosystem on the Qiangtang Plateau[J]. Chinese Journal of Applied Ecology, 2010, 21(6): 1400-1404.]
pmid: 20873612 |
|
[3] | 水宏伟, 干珠扎布, 吴红宝, 等. 禁牧对藏北高原狼毒型退化草地群落特征及生产力的影响[J]. 草业学报, 2020, 29(10): 14-21. |
[Shui Hongwei, Gan Zhuzhabu, Wu Hongbao, et al. Effects of grazing prohibition on community characteristics and productivity of degraded grassland with wolfsbane in northern Tibetan Plateau[J]. Acta Prataculturae Sinica, 2020, 29(10): 14-21.] | |
[4] | 张宪洲, 王小丹, 高清竹, 等. 开展高寒退化生态系统恢复与重建技术研究, 助力西藏生态安全屏障保护与建设[J]. 生态学报, 2016, 36(22): 7083-7087. |
[Zhang Xianzhou, Wang Xiaodan, Gao Qingzhu, et al. Research on the restoration and reconstruction of degraded alpine ecosystems has been carried out to help protect and build an ecological safety barrier in Tibet[J]. Acta Ecologica Sinica, 2016, 36(22): 7083-7087.] | |
[5] | 郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究[J]. 生态学报, 2020, 40(3): 964-975. |
[Hao Aihua, Xue Xian, Peng Fei, et al. Study on vegetation degradation and soil degradation of typical grassland on the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2020, 40(3): 964-975.] | |
[6] | Li G Y, Mu J P, Liu Y Z, et al. Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau[J]. Plant and Soil, 2017, 421: 10.1007/s11104-017-3448-x. |
[7] |
孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506.
doi: 10.17521/cjpe.2020.0180 |
[Sun Jian, Wang Yi, Liu Guohua. The effect mechanism of carbon accumulation rate of above-ground plants on the multifunctionality of ecosystem in alpine grassland of Qinghai-Tibet Plateau[J]. Chinese Journal of Plant Ecology, 2021, 45(5): 496-506.]
doi: 10.17521/cjpe.2020.0180 |
|
[8] | 魏宁, 于文竹, 安克俭, 等. 青藏高原高寒草原与草甸土壤可蚀性的关键因子[J]. 水土保持通报, 2021, 41(3): 87-93, 102. |
[Wei Ning, Yu Wenzhu, An Kejian, et al. The key factors of soil erodibility of alpine grasslands and meadows on the Qinghai-Tibet Plateau[J]. Bulletin of Soil and Water Conservation, 2021, 41(3): 87-93, 102.] | |
[9] | Wang Q F, Jin H J, Zhang T J, et al. Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai-Tibet plateau[J]. Elsevier, 2017, 156(56): 1-12. |
[10] |
Xiao P P, Zheng G G. Plateau pika disturbances alter plant productivity and soil nutrients in alpine meadows of the Qinghai-Tibetan Plateau, China[J]. The Rangeland Journal, 2017, 39(2): 133-144.
doi: 10.1071/RJ16093 |
[11] | 高杨, 符素华, 罗来军, 等. 砾石覆盖度测量方法研究[J]. 水土保持通报, 2013, 33(4): 264-267, 270. |
[Gao Yang, Fu Suhua, Luo Laijun, et al. Study on measuring method of gravel coverage[J]. Bulletin of Soil and Water Conservation, 2013, 33(4): 264-267, 270.] | |
[12] |
Okin G S, Painter T H. Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces[J]. Remote Sensing of Environment, 2004, 89(3): 272-280.
doi: 10.1016/j.rse.2003.10.008 |
[13] | 董玉祥, Namikas S L, Hesp P A. 海岸风沙流中不同粒径组沙粒的垂向分布模式[J]. 地理研究, 2009, 28(5): 1179-1187. |
[Dong Yuxiang, Namikas S L, Hesp P A. Vertical distribution patterns of sand particles of different particle sizes in the coastal sand flow[J]. Geographical Research, 2009, 28(5): 1179-1187.] | |
[14] |
陈西庆, 严以新, 童朝锋, 等. 长江输入河口段床沙粒径的变化及机制研究[J]. 自然科学进展, 2007, 17(2): 233-239.
doi: 10.1080/10020070612331343253 |
[Chen Xiqing, Yan Yixin, Tong Chaofeng, et al. Study on the change and mechanism of bed sand particle size in the estuary section of the Yangtze River[J]. Progress in Natural Science, 2007, 17(2): 233-239.]
doi: 10.1080/10020070612331343253 |
|
[15] |
Quade J. Desert pavements and associated rock varnish in the Mojave Desert: How old can they be?[J]. Geology, 2015, 29(9): 855-858.
doi: 10.1130/0091-7613(2001)029<0855:DPAARV>2.0.CO;2 |
[16] | 曹晓阳, 冯益明. 噶顺戈壁地表砾石粒度特征分析[J]. 中国水土保持科学, 2016, 14(1): 46-52. |
[Cao Xiaoyang, Feng Yiming. Analysis of surface gravel grain size characteristics in Gaishun Gobi[J]. Science of Soil and Water Conservation, 2016, 14(1): 46-52.] | |
[17] | 王利兵, 胡小龙, 余伟莅, 等. 沙粒粒径组成的空间异质性及其与灌丛大小和土壤风蚀相关性分析[J]. 干旱区地理, 2006, 29(5): 688-693. |
[Wang Libing, Hu Xiaolong, Yu Weili, et al. Spatial heterogeneity of sand particle size composition and its correlation with shrub size and soil wind erosion[J]. Arid Land Geography, 2006, 29(5): 688-693.] | |
[18] | Shrestha A, Luo W. Analysis of groundwater nitrate contamina-tion in the Central Valley: Comparison of the geodetector method, principal component analysis and geographically weighted regres-sion[J]. International Journal of Geo-Information, 2017, 6(10): 297. |
[19] | 邱霞. 那曲南部地区砾石特征参数空间分布规律研究[D]. 成都: 成都理工大学, 2021. |
[Qiu Xia. Research on the Spatial Distribution Law of Gravel Characteristic Parameters in Southern Naqu. Master Thesis[D]. Chengdu: Chengdu University of Technology, 2021.] | |
[20] |
Wentworth C K. A Scale of Grade and Class Terms for Clastic Sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
doi: 10.1086/622910 |
[21] | 裴志林, 杨勤科, 王春梅, 等. 黄河上游植被覆盖度空间分布特征及其影响因素[J]. 干旱区研究, 2019, 36(3): 546-555. |
[Pei Zhilin, Yang Qinke, Wang Chunmei, et al. Spatial distribution characteristics and influencing factors of vegetation coverage in the upper reaches of the Yellow River[J]. Arid Zone Research, 2019, 36(3): 546-555.] | |
[22] |
文琦, 施琳娜, 马彩虹, 等. 黄土高原村域多维贫困空间异质性研究——以宁夏彭阳县为例[J]. 地理学报, 2018, 73(10): 1850-1864.
doi: 10.11821/dlxb201810003 |
[Wen Qi, Shi Linna, Ma Caihong, et al. Research on the spatial heterogeneity of multidimensional poverty in the villages of the Loess Plateau: A case study of Pengyang County, Ningxia[J]. Acta Geographica Sinica, 2018, 73(10): 1850-1864.]
doi: 10.11821/dlxb201810003 |
|
[23] | 鲁迪, 钱宏胜, 赵鹏飞, 等. 河南省区域城市化与生态环境效应空间关系分析[J]. 信阳师范学院学报(自然科学版), 2015, 28(3): 377-381. |
[Lu Di, Qian Hongsheng, Zhao Pengfei, et al. Analysis of spatial relationship between regional urbanization and ecological environment effects in Henan Province[J]. Journal of Xinyang Normal University (Natural Science Edition), 2015, 28(3): 377-381.] | |
[24] |
孙志虎, 牟长城, 孙龙. 采用地统计学方法对落叶松人工纯林表层细根生物量的估计[J]. 植物生态学报, 2006, 30(5): 771-779.
doi: 10.17521/cjpe.2006.0099 |
[Sun Zhihu, Mou Changcheng, Sun Long. Estimation of surface fine root biomass of pure larch plantations using geostatistics methods[J]. Chinese Journal of Plant Ecology, 2006, 30(5): 771-779.]
doi: 10.17521/cjpe.2006.0099 |
|
[25] |
杨忍, 刘彦随, 龙花楼, 等. 基于格网的农村居民点用地时空特征及空间指向性的地理要素识别: 以环渤海地区为例[J]. 地理研究, 2015, 34(6): 1077-1087.
doi: 10.11821/dlyj201506007 |
[Yang Ren, Liu Yansui, Long Hualou, et al. Recognition of geographic elements based on grid-based spatial and temporal characteristics and spatial directivity of rural residential land use: A case study of the Bohai Rim region[J]. Geographical Research, 2015, 34(6): 1077-1087.]
doi: 10.11821/dlyj201506007 |
|
[26] |
Wang J F, Zhang T L, Fu B J. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67: 250-256.
doi: 10.1016/j.ecolind.2016.02.052 |
[1] | TANG Kexin, GUO Jianbin, HE Liang, CHEN Lin, WAN Long. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands [J]. Arid Zone Research, 2024, 41(6): 964-973. |
[2] | LIU Rulong, ZHAO Yuanyuan, CHEN Guoqing, CHI Wenfeng, LIU Zhengjia. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(4): 674-683. |
[3] | LAI Hongyu, LYU Desheng, ZHU Yan, WANG Zhenhua, WEN Yue, SONG Libing, QI Hao. Effects of biochar application on soil hydrothermal salinity and cotton growth in brackish water drip irrigation cotton field [J]. Arid Zone Research, 2024, 41(2): 326-338. |
[4] | QI Runze, PAN Jinghu. Spatial and temporal evolution of ecological vulnerability and its influencing factors in the Hehuang area [J]. Arid Zone Research, 2023, 40(6): 1002-1013. |
[5] | WU Xueqing, ZHANG Lele, GAO Liming, LI Yankun, LIU Xuanchen. Dynamic change and driving force of net primary productivity in Qinghai Lake Basin [J]. Arid Zone Research, 2023, 40(11): 1824-1832. |
[6] | ZHAO Mengen,YAN Qingwu,LIU Zhengting,WANG Wenming,LI Gui’e,WU Zhenhua. Analysis of temporal and spatial evolution and influencing factors of soil erosion in Ordos City [J]. Arid Zone Research, 2022, 39(6): 1819-1831. |
[7] | WANG Qikun,WU Wei,YANG Xueqi,SANG Guoqing. Spatial-temporal changes and driving factors of habitat quality in Shaanxi Province during the past 20 years [J]. Arid Zone Research, 2022, 39(5): 1684-1694. |
[8] | HE Jing,Jilili ABUDUWAILI,MA Long,Galymzhan SAPAROV,Gulnura ISSANOVA. Grain size characteristics and spatial heterogeneity of farmland soils in the Syr Darya River Basin of Kazakhstan [J]. Arid Zone Research, 2022, 39(4): 1282-1292. |
[9] | Pariha Helili,ZAN Mei,Alimjan Kasim. Remote sensing evaluation of ecological environment in Urumqi City and analysis of driving factors [J]. Arid Zone Research, 2021, 38(5): 1484-1496. |
[10] | YAN Jinsheng,WANG Yongdong,LOU Boyuan,Akida Askar,XU Xinwen. Health assessment of plantations in Nursultan, capital of Kazakhstan [J]. Arid Zone Research, 2021, 38(5): 1474-1483. |
[11] | XI Wentao,GAO Jing. Spatial heterogeneity of annual precipitation δ18O over the Tibetan Plateau based on the use of a geographical detector [J]. Arid Zone Research, 2021, 38(5): 1199-1206. |
[12] | CHANG Mengdi,WANG Xinjun,LI Na,YAN Linan,MA Ke,LI Juyan. Study on temporal and spatial variation characteristics and influencing factors of hydraulic erosion in the middle of the northern slope of Tianshan Mountains based on CSLE model [J]. Arid Zone Research, 2021, 38(4): 939-949. |
[13] | GAO Li-juan,LV Guang-hui,WANG Yun,SU Qian,ZHANG Xue-mei. [J]. , 2014, 31(1): 51-56. |
[14] | YANG Han, CHEN Xue-Gang, WANG Ya-Qi. Dynamic Change of Wetland Landscapes in the Ertix River Basin, Xinjiang during the Period of 1990-2010 [J]. , 2013, 30(2): 211-218. |
|