Arid Zone Research ›› 2023, Vol. 40 ›› Issue (12): 1938-1948.doi: 10.13866/j.azr.2023.12.07
• Land and Water Resources • Previous Articles Next Articles
WU Rui1,2,3(),CAO Hongyu1,2,3,GAO Guanglei1,2,3(),YU Minghan1,2,3,DING Guodong1,2,3,ZHANG Ying1,2,3,ZHAO Peishan1,2,3
Received:
2023-04-30
Revised:
2023-08-14
Online:
2023-12-15
Published:
2023-12-18
WU Rui, CAO Hongyu, GAO Guanglei, YU Minghan, DING Guodong, ZHANG Ying, ZHAO Peishan. Effects of irrigation and salinity treatments on the soil bacterial community and plant physiological characteristics of Cyperus esculentus farmland in Horqin Sandy Land[J].Arid Zone Research, 2023, 40(12): 1938-1948.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Alpha diversity index of soil bacterial community under different irrigation and salinity treatments in Horqin Sandy Land"
处理 | Chao1指数 | Shannon指数 | Coverage指数 | |
---|---|---|---|---|
灌溉处理 | W0 | 5771.9±690.13a | 10.13±0.41a | 0.95±0.01a |
W1 | 5843.85±294.29a | 10.27±0.25a | 0.95±0.01a | |
W2 | 5928.31±759.23a | 10.14±0.49a | 0.95±0.01a | |
施盐处理 | S1 | 5912.15±527.4a | 10.25±0.26a | 0.95±0.01a |
S2 | 5971.39±319.48a | 10.3±0.14a | 0.95±0.01a | |
S3 | 5660.52±843.56a | 9.98±0.57a | 0.95±0.01a |
Tab. 2
Topological parameters of the molecular ecological and random networks of soil bacteria under different irrigation and salinity treatments in Horqin Sandy Land"
拓扑参数 | 灌溉处理 | 施盐处理 | ||||||
---|---|---|---|---|---|---|---|---|
W0 | W1 | W2 | S1 | S2 | S3 | |||
分子生态网络 | 节点数 | 189 | 197 | 179 | 185 | 180 | 180 | |
边数 | 1371 | 1099 | 688 | 1823 | 564 | 895 | ||
正相关连接/% | 58.21 | 56.87 | 78.05 | 54.14 | 56.56 | 75.31 | ||
平均度 | 14.508 | 11.157 | 7.687 | 19.708 | 6.267 | 9.944 | ||
平均路径长度 | 3.426 | 4.008 | 3.978 | 3.309 | 4.560 | 3.775 | ||
平均聚类系数 | 0.509 | 0.507 | 0.491 | 0.543 | 0.420 | 0.460 | ||
模块性 | 0.488 | 0.410 | 0.650 | 0.328 | 0.643 | 0.574 | ||
随机网络 | 平均路径长度 | 2.230 | 2.453 | 2.758 | 1.998 | 3.052 | 2.495 | |
平均聚类系数 | 0.073 | 0.056 | 0.050 | 0.108 | 0.038 | 0.052 | ||
模块性 | 0.207 | 0.250 | 0.322 | 0.176 | 0.361 | 0.262 |
Tab. 3
Growth and physiological indices of Cyperus esculentus under different irrigation and salinity treatments in Horqin Sandy Land"
生长生理指标 | 灌溉处理 | 施盐处理 | |||||
---|---|---|---|---|---|---|---|
W0 | W1 | W2 | S1 | S2 | S3 | ||
株高/cm | 51.81±6.23a | 54.7±6.99a | 47.70±7.65b | 54.48±8.16a | 50.85±7.33ab | 48.89±5.90b | |
冠幅/cm | 64.61±10.71c | 91.94±10.10a | 76.70±9.54b | 77.30±15.34a | 77.63±14.35a | 78.33±15.99a | |
分蘖数 | 7.33±2.24b | 12.44±4.13a | 11.22±2.44a | 10.56±3.00a | 9.44±3.97a | 11.00±4.21a | |
果实数 | 19.89±10.37a | 24.22±9.60a | 16.44±9.34a | 21.67±10.58a | 18.22±6.67a | 20.67±12.56a | |
地上干重/g | 18.09±5.42b | 25.67±5.29a | 23.39±6.42ab | 25.84±7.83a | 19.75±6.02b | 21.56±3.63ab | |
地下干重/g | 15.48±7.28a | 19.55±7.64a | 15.87±5.87a | 19.64±7.75a | 14.25±5.12a | 17.02±7.39a | |
根冠比 | 0.85±0.25a | 0.79±0.33a | 0.70±0.27a | 0.80±0.32a | 0.75±0.26a | 0.80±0.31a | |
PEP羧化酶活性/(U·g-1) | 4.88±0.29b | 4.55±0.07c | 5.21±0.22a | 4.83±0.25a | 4.76±0.31a | 5.05±0.42a | |
脱落酸ABA/(μg·g-1) | 63.11±4.55a | 60.50±6.06a | 59.33±2.51a | 57.55±3.79b | 62.63±5.61a | 62.76±2.54a | |
可溶性糖SS/(mg·g-1) | 2.94±0.16a | 2.81±0.21a | 2.89±0.15a | 3.03±0.13a | 2.88±0.11b | 2.73±0.15c | |
脯氨酸Pro/(ng·g-1) | 454.97±55.47a | 466.02±28.85a | 405.66±17.3b | 442.28±49.82a | 456.32±51.92a | 428.06±30.11a | |
过氧化物酶活性POD/(mU·g-1) | 4.74±0.28a | 4.95±0.18a | 4.81±0.43a | 4.67±0.30b | 5.14±0.12a | 4.69±0.23b | |
超氧物歧化酶活性SOD/(U·g-1) | 731.90±53.39b | 820.39±31.44a | 666.69±42.93c | 755.51±93.46a | 721.17±64.46a | 742.3±74.22a | |
丙二醛MDA/(nmol·g-1) | 0.99±0.06a | 1.02±0.04a | 1.03±0.09a | 1.02±0.07ab | 1.05±0.03a | 0.97±0.07b |
[1] |
Danierhan S, Shalamu A, Tumaerbai H. Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China[J]. Journal of Arid Land, 2013, 5(1): 51-59.
doi: 10.1007/s40333-013-0141-7 |
[2] | 刘玉兰, 王小宁, 舒垚, 等. 不同产地油莎豆性状及组成分析研究[J]. 中国油脂, 2020, 45(8): 125-129. |
[Liu Yulan, Wang Xiaoning, Shu Yao, et al. Character and composition of Cyperus esculentus from different origins[J]. China Oils and Fats, 2020, 45(8): 125-129. ] | |
[3] | 王艺臻, 丁国栋, 崔欣然, 等. 盐碱复合胁迫对油沙豆生长和光合特性的影响[J]. 干旱区资源与环境, 2022, 36(5): 146-152. |
[Wang Yizhen, Ding Guodong, Cui Xinran, et al. Effects of saline-alkali stress on the growth and photosynthetic characteristics of Cyperus esculentus and the responses of protective enzymes[J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 146-152. ] | |
[4] | 杜宇佳, 高广磊, 陈丽华, 等. 呼伦贝尔沙区土壤细菌群落结构与功能预测[J]. 中国环境科学, 2019, 39(11): 4840-4848. |
[Du Yujia, Gao Guanglei, Chen Lihua, et al. Soil bacteria community structure and function prediction in the Hulun Buir Sandy Area[J]. China Environmental Science, 2019, 39(11): 4840-4848. ] | |
[5] |
王国基, 柴强, 张玉霞, 等. 干旱区玉米专用菌肥对玉米生长特性的影响[J]. 草地学报, 2015, 23(1): 173-179.
doi: 10.11733/j.issn.1007-0435.2015.01.027 |
[Wang Guoji, Chai Qiang, Zhang Yuxia, et al. Effects of maize special biofertilizer on maize growth in arid area[J]. Acta Agrestia Sinica, 2015, 23(1): 173-179. ]
doi: 10.11733/j.issn.1007-0435.2015.01.027 |
|
[6] |
Vurukonda S S K P, Vardharajula S, Shrivastava M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiological Research, 2016, 184: 13-24.
doi: 10.1016/j.micres.2015.12.003 pmid: 26856449 |
[7] | Praveen Kumar G, Mir Hassan Ahmed S K, Desai Suseelendra, et al. In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp[J]. International Journal of Bacteriology, 2014, 2014: 195946. |
[8] |
孙韵雅, 陈佳, 王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 2020, 28(5): 1203-1215.
doi: 10.11733/j.issn.1007-0435.2020.05.004 |
[Sun Yunya, Chen Jia, Wang Yue, et al. Advances in growth promotion mechanisms of PGPRs and their effectson improving plant stress tolerance[J]. Acta Agrestia Sinica, 2020, 28(5): 1203-1215. ]
doi: 10.11733/j.issn.1007-0435.2020.05.004 |
|
[9] |
Etesami H, Glick B R. Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants[J]. Environmental and Experimental Botany, 2020, 178: 104124.
doi: 10.1016/j.envexpbot.2020.104124 |
[10] |
Orhan F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum)[J]. Brazilian Journal of Microbiology, 2017, 47(3): 621-627.
doi: 10.1016/j.bjm.2016.04.001 |
[11] |
Pankaj U, Singh D N, Mishra P, et al. Autochthonous halotolerant plant growth-promoting rhizobacteria promote bacoside A yield of Bacopa monnieri (L.) Nash and phytoextraction of salt-affected soil[J]. Pedosphere, 2020, 30(5): 671-683.
doi: 10.1016/S1002-0160(20)60029-7 |
[12] |
李媛媛, 徐婷婷, 艾喆, 等. 锦鸡儿属植物功能性状与根际土壤细菌群落结构的关系[J]. 草业学报, 2022, 31(7): 38-49.
doi: 10.11686/cyxb2021202 |
[Li Yuanyuan, Xu Tingting, Ai Zhe, et al. Relationship between plant functional traits and rhizosphere bacterial community structure of two Caragana species[J]. Acta Prataculturae Sinica, 2022, 31(7): 38-49. ]
doi: 10.11686/cyxb2021202 |
|
[13] |
Fuhrman J A. Microbial community structure and its functional implications[J]. Nature, 2009, 459(7244): 193-199.
doi: 10.1038/nature08058 |
[14] |
Dai L X, Zhang G C, Yu Z P, et al. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil[J]. International Journal of Molecular Sciences, 2019, 20(9): 2265.
doi: 10.3390/ijms20092265 |
[15] | 徐扬, 张冠初, 丁红, 等. 花生根际土壤细菌群落对干旱和盐胁迫的响应[J]. 中国油料作物学报, 2020, 42(6): 985-993. |
[Xu Yang, Zhang Guanchu, Ding Hong, et al. Response of rhizosphere bacterial community structure associated with peanut (Arachis hypogaea L.) to high salinity and drought stress[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 985-993. ] | |
[16] |
Canfora L, Bacci G, Pinzari F, et al. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil?[J]. PloS one, 2014, 9(11): e114658.
doi: 10.1371/journal.pone.0114658 |
[17] |
Banerjee S, Schlaeppi K, van der Heijden M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews. Microbiology, 2018, 16(9): 567-576.
doi: 10.1038/s41579-018-0024-1 pmid: 29789680 |
[18] |
Banerjee S, Walder F, Buchi L, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots[J]. The ISME Journal, 2019, 13(7): 1722-1736.
doi: 10.1038/s41396-019-0383-2 |
[19] |
Chen Z J, Zheng Y, Ding C Y, et al. Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops[J]. Ecotoxicology and Environmental Safety, 2017, 145: 111-118.
doi: S0147-6513(17)30431-1 pmid: 28711820 |
[20] |
Kang Y L, An X R, Ma Y W, et al. Organic amendments alleviate early defoliation and increase fruit yield by altering assembly patterns and of microbial communities and enzymatic activities in sandy pear (Pyrus pyrifolia)[J]. AMB Express, 2021, 11(1): 164.
doi: 10.1186/s13568-021-01322-5 pmid: 34878599 |
[21] | 胡晓婧, 刘俊杰, 魏丹, 等. 东北黑土区不同纬度农田土壤真菌分子生态网络比较[J]. 应用生态学报, 2018, 29(11): 3802-3810. |
[Hu Xiaojing, Liu Junjie, Wei Dan, et al. Comparison on fungal molecular ecological networks of agricultural soils with different latitudes in the black soil region of Northeast China[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3802-3810. ] | |
[22] | 邓超超, 李玲玲, 谢军红, 等. 耕作措施对陇中旱农区土壤细菌群落的影响[J]. 土壤学报, 2019, 56(1): 207-216. |
[Deng Chaochao, Li Lingling, Xie Junhong, et al. Effects of tillage on soil bacterial community in the dryland farming area of central Gansu[J]. Acta Pedologica Sinica, 2019, 56(1): 207-216. ] | |
[23] | 杨立宾, 隋心, 崔福星, 等. 汤旺河国家公园不同演替阶段森林土壤细菌多样性变化规律[J]. 环境科学研究, 2019, 32(3): 458-464. |
[Yang Libin, Sui Xin, Cui Fuxing, et al. Soil bacterial diversity between different forest successional stages in Tangwang River National Park[J]. Research of Environmental Sciences, 2019, 32(3): 458-464. ] | |
[24] |
Bhatti A A, Haq S, Bhat R A. Actinomycetes benefaction role in soil and plant health[J]. Microbial Pathogenesis, 2017, 111: 458-467.
doi: S0882-4010(17)30588-0 pmid: 28923606 |
[25] | 徐飞, 张拓, 怀宝东, 等. 土地利用变化对松花江下游湿地土壤真菌群落结构及功能的影响[J]. 环境科学, 2021, 42(5): 2531-2540. |
[Xu Fei, Zhang Tuo, Huai Baodong, et al. Effects of land use changes on soil fungal community structure and function in the riparian wetland along the downstream of the Songhua River[J]. Environmental Science, 2021, 42(5): 2531-2540. ] | |
[26] |
Zheng W, Xue D M, Li X Z, et al. The responses and adaptations of microbial communities to salinity in farmland soils: A molecular ecological network analysis[J]. Applied Soil Ecology, 2017, 120: 239-246.
doi: 10.1016/j.apsoil.2017.08.019 |
[27] |
Pang Z Q, Chen J, Wang T H, et al. Linking plant secondary metabolites and plant microbiomes: A review[J]. Frontiers in Plant Science, 2021, 12: 621276.
doi: 10.3389/fpls.2021.621276 |
[28] |
Yuan M M, Guo X, Wu L W, et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 2021, 11(4): 343-348.
doi: 10.1038/s41558-021-00989-9 |
[29] |
Zhou H, Gao Y, Jia X H, et al. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China[J]. Soil Biology and Biochemistry, 2020, 144: 107782.
doi: 10.1016/j.soilbio.2020.107782 |
[30] | 颜培, 杜远达, 姜爱霞, 等. 黄河三角洲土壤真菌群落结构及互作网络对盐度的响应[J]. 分子植物育种, 2021, 19(11): 3818-3828. |
[Yan Pei, Du Yuanda, Jiang Aixia, et al. Response of soil fungal community structures and interaction networks to salinity in the Yellow River Delta[J]. Molecular Plant Breeding, 2021, 19(11): 3818-3828. ] | |
[31] | 许小虎, 车宗贤, 赵旭, 等. 长期施用绿肥对小麦玉米间作土壤微生物的影响[J]. 干旱地区农业研究, 2023, 41(1): 33-44. |
[Xu Xiaohu, Che Zongxian, Zhao Xu, et al. Effects of long-term application of green manure on soil microorganisms in wheat maize intercropping[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 33-44. ] | |
[32] | 谭海霞, 彭红丽, 葛振宇, 等. 盐碱土壤修复菌剂对耐盐蒲公英根际土壤微生物群落多样性的影响[J]. 农业生物技术学报, 2023, 31(1): 156-164. |
[Tan Haixia, Peng Hongli, Ge Zhenyu, et al. Effects of salt-alkali soil remediation agents on microbial community diversity rhizosphere soil[J]. Journal of Agricultural Biotechnology, 2023, 31(1): 156-164. ] | |
[33] | 李靖宇, 杨瑞, 段晓敏, 等. 白芨滩地区不同生物土壤结皮类型对微生物群落结构和组成的影响[J]. 生态与农村环境学报, 2023, 39(1): 97-106. |
[Li Jingyu, Yang Rui, Duan Xiaomin, et al. Effects of different biological soil crust types on microbial community structure and composition in Baijitan, China[J]. Journal of Ecology and Rural Environment, 2023, 39(1): 97-106. ] | |
[34] |
Ai C, Zhang S Q, Zhang X, et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation[J]. Geoderma, 2018, 319: 156-166.
doi: 10.1016/j.geoderma.2018.01.010 |
[35] | 张英英, 魏玉杰, 吴之涛, 等. 不同种植年限对特殊药材土壤化学性质和微生物多样性的影响[J]. 干旱地区农业研究, 2023, 41(1): 150-159. |
[Zhang Yingying, Wei Yujie, Wu Zhitao, et al. Effects of different cropping years on soil chemical properties of special medicine source plant[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 150-159. ] | |
[36] | 黎妍妍, 李亚培, 孙玉晓, 等. 外源橙皮素对烟草青枯病及根围土壤细菌群落的影响[J]. 中国烟草科学, 2022, 43(5): 38-43. |
[Li Yanyan, Li Yapei, Sun Yuxiao, et al. The effects of exogenous hesperetin on tobacco bacterial wilt infection and bacterial community of rhizosphere soil[J]. Chinese Tobacco Science, 2022, 43(5): 38-43. ] | |
[37] | 张帆, 谢琛, 肖宝莹, 等. 木醋液对番茄根际土壤理化性质及细菌群落多样性的影响[J/OL]. 吉林农业大学学报: 1-8[2023-11-04]. https://doi.org/10.13327/j.jjlau.2022.1751. |
[Zhang Fan, Xie Chen, Xiao Baoying, et al. Effects of wood vinegar on physicochemical properties and bacteria community diversity of tomato rhizosphere soil[J]. Journal of Jilin Agricultural University: 1-8[2023-11-04]. https://doi.org/10.13327/j.jjlau.2022.1751. ] | |
[38] | 钟融, 王培如, 孙培杰, 等. 长年耕作对北方旱作麦田土壤细菌群落结构及理化性质的影响[J]. 环境科学, 2023, 44(10): 5800-5812. |
[Zhong Rong, Wang Peiru, Sun Peijie, et al. Effects of long-term tillage on soil bacterial community structure and physicochemical properties of dryland wheat fields in Northern China[J]. Environmental Science, 2023, 44(10): 5800-5812. ] | |
[39] |
Zhang Y, Gao Q Z, Ganjurjav H, et al. Grazing exclusion changed the complexity and keystone species of alpine meadows on the Qinghai-Tibetan Plateau[J]. Frontiers in Ecology and Evolution, 2021, 9: 638157.
doi: 10.3389/fevo.2021.638157 |
[40] | 杨馥霞, 汤玲, 贺欢, 等. 不同熏蒸剂对草莓连作土壤养分和微生物群落的影响[J]. 微生物学通报, 2023, 50(6): 2452-2467. |
[Yang Fuxia, Tang Ling, He Huan, et al. Effects of different fumigants on soil nutrients and microbial communities of strawberry continuous cropping[J]. Microbiology China, 2023, 50(6): 2452-2467. ] | |
[41] |
Liu H W, Brettell L E, Qiu Z G, et al. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8): 733-743.
doi: S1360-1385(20)30114-X pmid: 32345569 |
[42] |
Shemshura O N, Bekmakhanova N E, Mazunina M N, et al. Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus[J]. FEMS microbiology letters, 2016, 363(5): fnw026.
doi: 10.1093/femsle/fnw026 |
[43] | 刘铎, 丛日春, 党宏忠, 等. 柳树幼苗渗透调节物质对中、碱性钠盐响应的差异性[J]. 生态环境学报, 2014, 23(9): 1531-1535. |
[Liu Duo, Cong Richun, Dang Hongzhong, et al. Comparative effects of salt and alkali stresses on plant physiology of willow[J]. Ecology and Environmental Sciences, 2014, 23(9): 1531-1535. ] | |
[44] | 梁培鑫, 唐榕, 郭睿, 等. 混合盐碱胁迫对油莎豆生长及生理性状的影响[J]. 干旱区资源与环境, 2022, 36(10): 185-192. |
[Liang Peixin, Tang Rong, Guo Rui, et al. Effect of mixed salt-alkaline stress on growth and physiological characteristics in Cyperus esculentus L[J]. Journal of Arid Land Resources and Environment, 2022, 36(10): 185-192. ] | |
[45] |
Isah T. Stress and defense responses in plant secondary metabolites production[J]. Biological Research, 2019, 52(1): 1-25.
doi: 10.1186/s40659-018-0209-0 |
[46] |
李倩, 袁玲, 杨水平, 等. 连作对黄花蒿生长及土壤细菌群落结构的影响[J]. 中国中药杂志, 2016, 41(10): 1803-1810.
doi: 10.4268/cjcmm20161007 pmid: 28895324 |
[Li Qian, Yuan Ling, Yang Shuiping, et al. Influence of continuous cropping on growth of Artemisia annua and bacterial communities in soil[J]. China Journal of Chinese Materia Medica, 2016, 41(10): 1803-1810. ]
doi: 10.4268/cjcmm20161007 pmid: 28895324 |
|
[47] | 钟旻依, 张新全, 杨昕颖, 等. 植物对重金属铬胁迫响应机制的研究进展[J]. 草业科学, 2019, 36(8): 1962-1975. |
[Zhong Minyi, Zhang Xinquan, Yang Xinying, et al. Recent advances in plant response to chromium stress[J]. Pratacultural Science, 2019, 36(8): 1962-1975. ] | |
[48] | 牛倩云, 韩彦莎, 徐丽霞, 等. 作物轮作对谷田土壤理化性质及谷子根际土壤细菌群落的影响[J]. 农业环境科学学报, 2018, 37(12): 2802-2809. |
[Niu Qianyun, Han Yansha, Xu Lixia, et al. Effects of crop rotation on soil physicochemical properties and bacterial community of foxtail millet rhizosphere soil[J]. Journal of Agro-Environment Science, 2018, 37(12): 2802-2809. ] | |
[49] | 吴桐桐, 徐基胜, 周云鹏, 等. 黄河三角洲不同生境土壤理化特性及细菌群落结构特征[J]. 农业环境科学学报, 2022, 41(10): 2250-2261. |
[Wu Tongtong, Xu Jisheng, Zhou Yunpeng, et al. Variation in soil properties and bacterial community composition of different habitat soils in the Yellow River Delta, China[J]. Journal of Agro-Environment Science, 2022, 41(10): 2250-2261. ] |
[1] | CAO Ziqi, LU Zhanyuan, REN Yongfeng, ZHAO Xiaoqing, WANG Jianguo, HOU Zhihui, HAN Yunfei, WANG Dengyun, SHANG Xueyan, DUAN Rui. Effects of different nitrogen levels on the apparent soil nutrient balance and tuber yield of Cyperus esculentus farmland [J]. Arid Zone Research, 2024, 41(1): 71-79. |
[2] | LI Juan, LIU Yang, LIU Guangxiu, CHENG Liang, GUO Qingyun, ZHANG Wei, ZHANG Gaosen. Study on bacterial community structure and influencing factors in the northern margin of the Shanshan Kumtag Desert [J]. Arid Zone Research, 2023, 40(8): 1358-1368. |
[3] | JIJI Jiamen, CHENG Yiben, CHEN Linglong, WAN Pengxiang, ZHANG Yihui, YANG Wenbin, BAI Xuying, WANG Tao. Dynamic changes in soil moisture and its response to rainfall in Pinus sylvestris var. mongolica plantation in Horqin Sandy Land [J]. Arid Zone Research, 2023, 40(5): 756-766. |
[4] | MA Haowen, WANG Yongfang, GUO Enliang. Remote sensing monitoring of aeolian desertification in Ongniud Banner based on GEE [J]. Arid Zone Research, 2023, 40(3): 504-516. |
[5] | MA Xingyu,HUANG Caibian,ZENG Fanjiang,LI Xiangyi,ZHANG Yulin,DING Ya,GAO Yanju,XU Mengqi. To simulate the growth and physiological responses of Cyperus esculentus seedlings to salt stress in sandy soil [J]. Arid Zone Research, 2022, 39(6): 1862-1874. |
[6] | LIAO Guiyun,WU Xiuqin,TAN Jin,LI Dan,FENG Mengxin. Application of the Wind Erosion Prediction System in the Ulan Buh Desert Cyperus esculentus planting area [J]. Arid Zone Research, 2022, 39(5): 1504-1513. |
[7] | DING Ya,YANG Jianming,LI Li,ZHANG Zhihao,ZENG Fanjiang. Effects of deficit irrigation and film mulching on biomass and production of Cyperus esculentus in the southern Xinjiang Basin [J]. Arid Zone Research, 2022, 39(3): 883-892. |
[8] | CUI Zhenzhen,MA Chao,CHEN Dengkui. Spatiotemporal variation of vegetation in the Horqin Sandy Land and its response to climate change from 1982-2015 [J]. Arid Zone Research, 2021, 38(2): 536-544. |
[9] | CAO Wenmei,LIU Tingxi,WANG Xixi,WANG Guanli,LI Dongfang,TONG Xing. Land use and land cover classifications of Horqin Sandy Land dune-meadow areas [J]. Arid Zone Research, 2021, 38(2): 526-535. |
[10] | SUN Shan-shan, LIU Xin-ping, WEI Shui-lian, ZHANG Tong-hui, HE Yu-hui, Chelmeg, LYU Peng, WANG Ming-ming. Response of Plant Seedling Growth to the Changes in Precipitation and Wind Velocity in Horqin Sandy Land [J]. Arid Zone Research, 2019, 36(4): 870-877. |
[11] | BAO Yong-zhi, LIU Ting-xi, DUAN Li-min, WANG Guan-li, QI Xiu-jiao, HUANG Tian-Yu, LI Ming-Yang. Photosynthetic Traits of Caragana microphylla and Populus spp. and Their Responses to Climate in the Horqin Sandy Land [J]. Arid Zone Research, 2019, 36(2): 420-429. |
[12] | ZHANG Jing, ZUO Xiao-An, 吕Peng , YUE Xi-Yuan, ZHANG Jing. Plant Functional Traits and Interrelationships of Dominant Species on Typical Grassland in Horqin Sandy Land, China [J]. , 2018, 35(01): 137-143. |
[13] | JIANG De-ming, ZHANG Na, A Lamusa,ZHOU Quan-lai,WANG Yong-cui,MIAO Ren-hui,Toshio Oshid. Optimized Modes of Planted Sand-fixing Vegetation in the Horqin Sandy Land [J]. , 2014, 31(1): 149-156. |
[14] | MIAO Chun-Ping, LI Xue-Hua, JIANG De-Ming. Spatial Distribution and Interspecific Association of Plants in Ecotone between Mobile Sand Dunes and Interdune Lowlands in the Horqin Sandy Land [J]. , 2013, 30(5): 832-837. |
[15] | WANG Hai-Yan, LIU Ting-Xi, WANG Li, WU Yao, WANG Tian-Shuai, TONG Xin. Spatial Variation of Soil Moisture Content in the Dune-meadow Ecotone in the Horqin Sandy Land [J]. , 2013, 30(3): 438-443. |
|