Arid Zone Research ›› 2022, Vol. 39 ›› Issue (1): 113-122.doi: 10.13866/j.azr.2022. 01.12
Previous Articles Next Articles
SUN Congjian(),CHEN Wei,WANG Shiyu
Received:
2021-07-13
Revised:
2021-09-17
Online:
2022-01-15
Published:
2022-01-24
SUN Congjian,CHEN Wei,WANG Shiyu. Stream component characteristics of the inland river basin of the Tarim Basin under regional climate change[J].Arid Zone Research, 2022, 39(1): 113-122.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Temperature and precipitation change rates and step change points in the past 50 years"
位置 | 类型 | 气温 | 降水 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cv | 比率/[℃·(10a)-1] | 突变点(年) | Cv | 比率/[mm·(10a)-1] | 突变点(年) | 比例/% | |||
平原 | 年均 | 0.04 | 0.29 | 1996** | 0.56 | 5.66 | None | - | |
春季 | 0.13 | 0.35 | 1996** | 1.33 | 0.06 | None | 18 | ||
夏季 | 0.03 | 0.12 | None | 0.80 | 3.72 | None | 63 | ||
秋季 | 0.17 | 0.29 | 1997** | 1.29 | 1.38 | 1974* | 14 | ||
冬季 | 0.25 | 0.39 | 1978** | 1.51 | 0.50 | None | 5 | ||
山区 | 年均 | 0.24 | 0.31 | 1987** | 0.32 | 7.30 | 1997** | - | |
春季 | 2.29 | 0.33 | 1992** | 0.74 | 1.19 | None | 14 | ||
夏季 | 0.07 | 0.19 | 1993** | 0.46 | 4.95 | None | 66 | ||
秋季 | 0.23 | 0.44 | 1986** | 0.92 | 0.69 | None | 12 | ||
冬季 | 0.17 | 0.27 | None | 1.39 | 0.45 | None | 8 |
Tab. 4
Water samples and their monthly mean isotope and chemical measurements"
月份 | 河水 | 降水 | 地下水 | 融冰雪水(河冰) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δD | δ18O | TDS | N | δD | δ18O | TDS | N | δD | δ18O | TDS | N | δD | δ18O | TDS | N | ||||
/‰ | /‰ | /(mg·L-1) | /‰ | /‰ | /(mg·L-1) | /‰ | /‰ | /(mg·L-1) | /‰ | /‰ | /(mg·L-1) | ||||||||
1 | -19.9 | -25.74 | 70 | 1 | |||||||||||||||
2 | -115.45 | -15.2 | 75 | 6 | |||||||||||||||
3 | -39.07 | -6.88 | 410 | 6 | -96.16 | -13.34 | 70 | 2 | -63.2 | -9.3 | 715 | 2 | -28.05 | -5.38 | 170 | 2 | |||
4 | -55.44 | -9.15 | 412 | 6 | -87.89 | -11.72 | 110 | 1 | -39.06 | -7.72 | 720 | 2 | -28.52 | -5.5 | 174 | 2 | |||
5 | -56 | -8.94 | 400 | 6 | -78.37 | -10.09 | 120 | 4 | -41.24 | -7.56 | 715 | 2 | -41.2 | -7.87 | 150 | 2 | |||
6 | -49.14 | -8.54 | 370 | 6 | -44.21 | -7.2 | 120 | 1 | -41.24 | -7.57 | 730 | 2 | -79.9 | -10.24 | 170 | 2 | |||
7 | -47.84 | -8.18 | 370 | 6 | -33.27 | -5.97 | 120 | 4 | -49.91 | -8.54 | 740 | 2 | -121..30 | -12.22 | 160 | 2 | |||
8 | -37.77 | -7.31 | 380 | 6 | -27.45 | -4.79 | 130 | 5 | -58.01 | -9.3 | 725 | 2 | -115.2 | -11.35 | 170 | 2 | |||
9 | -39.33 | -7.24 | 390 | 6 | -30.62 | -5.47 | 119 | 4 | -60.23 | -9.4 | 720 | 2 | -80.9 | -10.49 | 160 | 2 | |||
10 | -38.66 | -7.01 | 400 | 6 | -112.48 | -14.94 | 110 | 1 | -61.1 | -9.45 | 715 | 2 | -28.32 | -5.3 | 170 | 2 | |||
11 | -39.2 | -7.24 | 400 | 6 | -194.34 | -24.41 | 110 | 1 | -61 | -9.4 | 715 | 2 | -29.85 | -5.71 | 170 | 2 | |||
12 | - | - | - | - | -194.11 | -24.31 | 80 | 2 | - | - | - | - | - | - | - | - |
[1] | 张学斌, 石培基, 罗君, 等. 基于景观格局的干旱内陆河流域生态风险分析——以石羊河流域为例[J]. 自然资源学报, 2014, 29(3): 410-419. |
[Zhang Xuebin, Shi Peiji, Luo Jun, et al. The ecological risk assessment of arid inland river basin at the landscape scale: A case study on Shiyang River Basin[J]. Journal of Natural Resources, 2014, 29(3): 410-419. ] | |
[2] |
Chen Z, Chen Y, Li W. Response of runoff to change of atmospheric 0 °C level height in summer in arid region of Northwest China[J]. Science China Earth Sciences, 2012, 55(9): 1533-1544.
doi: 10.1007/s11430-012-4472-6 |
[3] |
Chen Y, Txkeuchi K, Xu C, et al. Regional climate change and its effects on river runoff in the Tarim Basin, China[J]. Hydrological Processes, 2006, 20(10): 2207-2216.
doi: 10.1002/(ISSN)1099-1085 |
[4] | 孔彦龙, 庞忠和. 高寒流域同位素径流分割研究进展[J]. 冰川冻土, 2010, 32(3): 619-625. |
[Kong Yanlong, Pang Zhonghe. Isotope hydrograph separation in alpine catchments: A review[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 619-625. ] | |
[5] |
Li B, Chen Y, Chen Z, et al. Trends in runoff versus climate change in typical rivers in the arid region of Northwest China[J]. Quaternary International, 2012, 282: 87-95.
doi: 10.1016/j.quaint.2012.06.005 |
[6] | Sun C, Chen Y, Li X, et al. Analysis on the stream flow components of the typical inland River, Northwest China[J]. Hydrological Sciences Journal, 2016, 61: 970-981. |
[7] |
Sun C, Li W, Chen Y, et al. Isotopic and hydrochemical composition of runoff in the Urumqi River, Tianshan Mountains, China[J]. Environmental Earth Sciences, 2015, 74: 1521-1537.
doi: 10.1007/s12665-015-4144-x |
[8] |
Sun C, Chen Y, Li W, et al. Isotopic time-series partitioning of stream flow components under regional climate change in the Urumqi River, Northwest China[J]. Hydrological Sciences Journal, 2016, 61: 1443-1459.
doi: 10.1080/02626667.2015.1031757 |
[9] | Buttle J. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins[J]. Progress in Physical Geography, 1994, 18(1): 16-41. |
[10] |
Kendall C, Coplen T. Distribution of oxygen-18 and deuterium in river waters across the United States[J]. Hydrological Processes, 2001, 15(7): 1363-1393.
doi: 10.1002/(ISSN)1099-1085 |
[11] |
Burns D. Storm flow-hydrograph separation based on isotopes: The thrill is gone-what’s next[J]. Hydrological Processes, 2002, 16(7): 1515-1517.
doi: 10.1002/(ISSN)1099-1085 |
[12] |
Zhang Y, Song X, Wu Y. Use of oxygen-18 isotope to quantify flows in the upriver and middle reaches of the Heihe River, Northwestern China[J]. Environmental Geology, 2008, 58: 645-653.
doi: 10.1007/s00254-008-1539-y |
[13] | Zhao L, Yin L, Xiao H. Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River basin[J]. Chinese Science Bulletin, 2011, 5656(1): 58-67. |
[14] | Kong Y, Pang Z. Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation of discharge[J]. Journal of Hydrology, 2012, 434: 121-129. |
[15] | Chen Z, Chen Y, Li B. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of Northwest China[J]. Theoretical & Applied Climatology, 2013, 111: 537-545. |
[16] |
Sun C, Li X, Chen W, et al. Climate change and runoff response based on isotope analysis in an arid mountain watershed of the Western Kunlun Mountains[J]. Hydrological Sciences Journal, 2016, 62: 319-330.
doi: 10.1080/02626667.2016.1224885 |
[17] | 赵良菊, 尹力, 肖洪浪, 等. 黑河源区水汽来源及地表径流组成的稳定同位素证据[J]. 科学通报, 2011, 56(1): 58-67. |
[Zhao Liangju, Yin Li, Xiao Honglang, et al. Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River basin[J]. Chinese Science Bulletin, 2011, 56(1): 58-67. ] | |
[18] | 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1): 1-9. |
[Cheng Yaning, Yang Qing, Lou Yi, et al. Ponder on the issues of water resources in the arid region of Northwest China[J]. Arid Land Geography, 2012, 35(1): 1-9. ] | |
[19] | 郝玥, 余新晓, 邓文平, 等. 北京西山大气降水D和18O组成变化及水汽来源[J]. 自然资源学报, 2016, 31(7): 1211-1221. |
[Hao Yue, Yu Xinxiao, Deng Wenping, et al. The variations of hydrogen and oxygen compositions and moisture sources in the precipitation in western Mountain areas of Beijing[J]. Journal of Natural Resources, 2016, 31(7): 1211-1221. ] | |
[20] | 李兰海, 白磊, 姚亚楠, 等. 基于IPCC情境下新疆地区未来气候变化的预估[J]. 资源科学, 2012, 34(4): 602-612. |
[Li Lanhai, Bai Lei, Yao Yanan, et al. Projection of climate change in Xinjiang under IPCC SRES[J]. Resources Science, 2012, 34(4): 602-612. ] | |
[21] | 李斐, 刘苗苗, 王水献. 2001—2013 年开都河流域上游积雪时空分布特征及其对气象因子的响应[J]. 资源科学, 2016, 38(6): 1160-1168. |
[Li Fei, Liu Miaomiao, Wang Shuixian. Change in snow coverage and responses to climate change from 2001 to 2013 in the upper reaches of Kaidu River Basin[J]. Resources Science, 2016, 38(6): 1160-1168. ] | |
[22] | 桂娟, 李宗省, 冯起, 等. 祁连山古浪河流域径流组分特征[J]. 冰川冻土, 2019, 41(4): 918-925. |
[Gui Juan, Li Zongxing, Feng Qi, et al. Characteristics of runoff components in the Gulang River basin of the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 918-925. ] | |
[23] | 李宗省, 冯起, 李宗杰, 等. 祁连山北坡稳定同位素生态水文学研究的初步进展与成果应用[J]. 冰川冻土, 2019, 41(5): 1044-1052. |
[Li Zongxing, Feng Qi, Li Zongjie, et al. Ecohydrology based on stable isotope tracing in the northern Qilian Mountains: Preliminary progress and its applications[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1044-1052. ] | |
[24] | 桂娟, 王旭峰, 李宗省, 等. 典型冰冻圈地区植被变化对人类活动的响应研究——以祁连山为例[J]. 冰川冻土, 2019, 41(5): 1235-1243. |
[Gui Juan, Wang Xufeng, Li Zongxing, et al. Research on the response of vegetation change to human activities in typical cryosphere areas: Taking the Qilian Mountains as an example[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1235-1243. ] | |
[25] |
Sun C, Chen Y, Li J, et al. Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors[J]. Atmospheric Research, 2019, 227: 66-78.
doi: 10.1016/j.atmosres.2019.04.026 |
[26] |
Sun C, Chen W, Chen Y, et al. Stable isotope of atmospheric precipitation and its environmental drivers in the eastern Chinese Loess Plateau, China[J]. Journal of Hydrology, 2020, 581: 124404.
doi: 10.1016/j.jhydrol.2019.124404 |
[27] | 桂娟, 李宗省, 冯起, 等. 祁连山古浪河流域径流组分特征[J]. 冰川冻土, 2019, 41(4): 918-925. |
[Gui Juan, Li Zongxing, Feng Qi, et al. Characteristics of runoff components in the Gulang River basin of the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 918-925. ] | |
[28] |
Li Z, Qi F, L Z, et al. Climate background, fact and hydrological effect of multiphase water transformation in cold regions of the western China: A review[J]. Earth-Science Reviews, 2019, 190: 33-57.
doi: 10.1016/j.earscirev.2018.12.004 |
[29] |
Li Z, Gui J, Wang X, et al. Water resources in inland regions of central Asia: Evidence from stable isotope tracing[J]. Journal of Hydrology, 2019, 570: 1-16.
doi: 10.1016/j.jhydrol.2019.01.003 |
[30] |
Sun C, Shen Y, Chen Y, et al. Quantitative evaluation of the rainfall influence on streamflow in an inland mountainous river basin within Central Asia[J]. Hydrological Sciences Journal, 2018, 63(1): 17-30.
doi: 10.1080/02626667.2017.1390314 |
[1] | LI Yuhang, YU Wenxue, YANG Yongjun, ZHU Yanfeng, MA Jing, CHEN Fu. Spatio-temporal variation and attribution identification of natural runoff in the northern slope economic belt of Tianshan Mountains during the past 60 years [J]. Arid Zone Research, 2024, 41(9): 1446-1455. |
[2] | LU Wenjing, QU Deye, YANG Mingyue, HUANG Hanlin, YANG Shanquan. GCM-based stable isotope modelling of precipitation in the Mongolian Plateau [J]. Arid Zone Research, 2024, 41(9): 1491-1502. |
[3] | LYU Zhuangzhuang, QIAO Qingqing, DONG Sunyi, WANG Dong. Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming [J]. Arid Zone Research, 2024, 41(8): 1309-1322. |
[4] | ZHOU Jie, WANG Xuhu, DU Weibo, ZHOU Xiaolei, YANG Jie, ZAHNG Xiaowei. Prediction of potential distribution area of Picea schrenkiana under the background of climate change [J]. Arid Zone Research, 2024, 41(7): 1167-1176. |
[5] | LI Xiaodeng, CHANG Liang, DUAN Rui, WANG Qian, ZHANG Qunhui, YANG Bingchao. Analysis of the hydrochemistry characteristics and groundwater recharge sources in the Hotan River Basin, China [J]. Arid Zone Research, 2024, 41(6): 917-927. |
[6] | LIANG Shuanghe, NIU Zuirong, JIA Ling. Analysis of runoff changes and attribution in the main stream of Zuli River in the past 65 years [J]. Arid Zone Research, 2024, 41(6): 928-939. |
[7] | TANG Kexin, GUO Jianbin, HE Liang, CHEN Lin, WAN Long. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands [J]. Arid Zone Research, 2024, 41(6): 964-973. |
[8] | LI Hanwei, YAO Junqiang, RONG Tao, ZHANG Tianyang, GAO Yajie. Characteristics of atmospheric precipitation isotope and path analysis of water vapor transport in the Taxkorgan River Basin Valley [J]. Arid Zone Research, 2024, 41(3): 399-410. |
[9] | LI Pingping, GAI Nan, WANG Xiaodan, YANG Juncang. Analysis of the hydrogeochemical characteristics of the groundwater system in Dunhuang Crescent Lake [J]. Arid Zone Research, 2024, 41(2): 240-249. |
[10] | ZHANG Jiaqi, LIU Zhao, HAN Zhongqing, WANG Lixia, ZHANG Jinxia, YUE Jiayin, GUAN Zilong. Trend change and prediction of blue-green water in the Jinghe River Basin under climate change [J]. Arid Zone Research, 2024, 41(12): 2045-2055. |
[11] | ZHANG Qian, CAO Guangchao, ZHANG Lele, ZHAO Meiliang. Spatiotemporal changes in vegetation greenness on the southern slopes of the Qilian Mountains and their responses to climate change and human activities [J]. Arid Zone Research, 2024, 41(12): 2143-2153. |
[12] | HU Guanglu, FAN Yalun, TAO Hu, LI Haochen, YANG Penghua. Runoff trends and influencing factors at Caiqi hydrological station in the lower reaches of Shiyang River [J]. Arid Zone Research, 2024, 41(11): 1842-1852. |
[13] | ZHANG Shouchuan, ZHAO Chuntao, AN Yatao, LIU Kai, YU Dongmei, CHEN Liang, LI Qingkuan, WANG Jianping. Hydrogen and oxygen isotopic characteristics and indicative significance in the Nalenggele River [J]. Arid Zone Research, 2024, 41(11): 1853-1863. |
[14] | YANG Fei, ZHANG Wentao, ZHANG Feimin, WANG Chenghai. Climate characteristics and variation in the Qilian Mountains from 1961 to 2022 [J]. Arid Zone Research, 2024, 41(10): 1627-1638. |
[15] | ZHANG Yin, SUN Congjian, LIU Geng, CHAO Jinlong, GENG Tianwei. Response of NDSI in the Tarim River Basin mountainous areas to climate change over the past 20 years [J]. Arid Zone Research, 2024, 41(10): 1639-1648. |
|