Arid Zone Research ›› 2021, Vol. 38 ›› Issue (3): 640-649.doi: 10.13866/j.azr.2021.03.06
• Water Resources and Ulilization • Previous Articles Next Articles
YANG Lei1,2(),QU Xiangning1,2(),MA Zhenghu1,2,ZHNAG Yuxun1,2,TIAN Yuan1,2,HE Zhirun1,2
Received:
2020-09-07
Revised:
2021-01-18
Online:
2021-05-15
Published:
2021-06-17
Contact:
Xiangning QU
E-mail:yanglei010905@163.com;xn_qu@163.com
YANG Lei,QU Xiangning,MA Zhenghu,ZHNAG Yuxun,TIAN Yuan,HE Zhirun. Water quality evaluation and spatial difference of Yuehai wetland in Ningxia[J].Arid Zone Research, 2021, 38(3): 640-649.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Sampling point location"
位置 | 编号 | 经度(E) | 纬度(N) | 区域 |
---|---|---|---|---|
览山公园附近 | 1 | 106°12′20.13″ | 38°31′38.13″ | 入水口 |
阅海欢乐岛 | 2 | 106°11′59.48″ | 38°31′40.34″ | 深水区 |
南部湖心区 | 3 | 106°12′11.51″ | 38°31′53.14″ | 深水区 |
花博园南侧区 | 4 | 106°12′26.46″ | 38°32′06.63″ | 深水区 |
花博园北部区 | 5 | 106°12′10.89″ | 38°32′28.24″ | 深水区 |
西湖沟浅滩处 | 6 | 106°11′40.64″ | 38°32′15.17″ | 浅水区 |
芦苇区西侧 | 7 | 106°11′37.18″ | 38°32′39.25″ | 芦苇区 |
芦苇区东侧 | 8 | 106°12′08.78″ | 38°32′53.14″ | 芦苇区 |
环阅海公路旁 | 9 | 106°11′35.29″ | 38°33′10.16″ | 浅水区 |
芦苇区北部 | 10 | 106°12′07.87″ | 38°33′19.37″ | 芦苇区 |
四二干沟附近 | 11 | 106°12′25.91″ | 38°33′25.41″ | 浅水区 |
阅海北部浅滩 | 12 | 106°12′01.64″ | 38°33′44.49″ | 浅水区 |
三一支沟附近 | 13 | 106°12′38.15″ | 38°33′57.38″ | 浅水区 |
北部垂钓区 | 14 | 106°12′10.60″ | 38°34′00.75″ | 排水口 |
Tab. 2
Ormalization results of weight coefficient of evaluation indexes in May"
采样点 | 总氮 | 总磷 | 氨氮 | 溶解氧 | 高锰酸盐指数 |
---|---|---|---|---|---|
1 | 0.188 | 0.297 | 0.043 | 0.277 | 0.196 |
2 | 0.180 | 0.269 | 0.019 | 0.288 | 0.244 |
3 | 0.172 | 0.304 | 0.025 | 0.289 | 0.209 |
4 | 0.225 | 0.278 | 0.036 | 0.253 | 0.208 |
5 | 0.166 | 0.286 | 0.059 | 0.274 | 0.214 |
6 | 0.176 | 0.293 | 0.045 | 0.277 | 0.210 |
7 | 0.177 | 0.310 | 0.065 | 0.218 | 0.229 |
8 | 0.164 | 0.338 | 0.090 | 0.230 | 0.179 |
9 | 0.155 | 0.313 | 0.113 | 0.239 | 0.180 |
10 | 0.165 | 0.285 | 0.133 | 0.231 | 0.186 |
11 | 0.146 | 0.306 | 0.154 | 0.225 | 0.169 |
12 | 0.153 | 0.294 | 0.129 | 0.258 | 0.165 |
13 | 0.157 | 0.303 | 0.151 | 0.230 | 0.159 |
14 | 0.189 | 0.269 | 0.157 | 0.224 | 0.160 |
Tab. 3
Normalization results of weight coefficient of evaluation indexes in August"
采样点 | 总氮 | 总磷 | 氨氮 | 溶解氧 | 高锰酸盐指数 |
---|---|---|---|---|---|
1 | 0.250 | 0.143 | 0.007 | 0.204 | 0.396 |
2 | 0.199 | 0.132 | 0.008 | 0.222 | 0.440 |
3 | 0.287 | 0.134 | 0.006 | 0.193 | 0.380 |
4 | 0.206 | 0.140 | 0.008 | 0.183 | 0.464 |
5 | 0.140 | 0.167 | 0.008 | 0.189 | 0.494 |
6 | 0.200 | 0.196 | 0.007 | 0.171 | 0.427 |
7 | 0.221 | 0.079 | 0.008 | 0.204 | 0.488 |
8 | 0.321 | 0.172 | 0.006 | 0.129 | 0.371 |
9 | 0.299 | 0.160 | 0.006 | 0.158 | 0.377 |
10 | 0.163 | 0.220 | 0.007 | 0.180 | 0.428 |
11 | 0.191 | 0.244 | 0.006 | 0.174 | 0.385 |
12 | 0.254 | 0.242 | 0.005 | 0.150 | 0.350 |
13 | 0.126 | 0.265 | 0.007 | 0.152 | 0.451 |
14 | 0.256 | 0.215 | 0.006 | 0.132 | 0.391 |
Tab. 4
Results of normalization of evaluation index weight in November"
采样点 | 总氮 | 总磷 | 氨氮 | 溶解氧 | 高锰酸盐指数 |
---|---|---|---|---|---|
1 | 0.281 | 0.086 | 0.012 | 0.365 | 0.254 |
2 | 0.259 | 0.119 | 0.016 | 0.313 | 0.291 |
3 | 0.328 | 0.137 | 0.029 | 0.204 | 0.304 |
4 | 0.241 | 0.073 | 0.017 | 0.358 | 0.312 |
5 | 0.266 | 0.092 | 0.015 | 0.342 | 0.285 |
6 | 0.336 | 0.118 | 0.031 | 0.151 | 0.364 |
7 | 0.316 | 0.080 | 0.029 | 0.235 | 0.339 |
8 | 0.298 | 0.185 | 0.023 | 0.202 | 0.292 |
9 | 0.314 | 0.114 | 0.027 | 0.232 | 0.314 |
10 | 0.330 | 0.118 | 0.034 | 0.192 | 0.327 |
11 | 0.262 | 0.212 | 0.018 | 0.240 | 0.267 |
12 | 0.316 | 0.040 | 0.018 | 0.280 | 0.337 |
13 | 0.274 | 0.190 | 0.019 | 0.237 | 0.280 |
14 | 0.294 | 0.160 | 0.021 | 0.243 | 0.283 |
Tab. 5
Fuzzy comprehensive evaluation results of water quality in May"
点位 | Ⅰ类水 | Ⅱ类水 | Ⅲ类水 | Ⅳ类水 | Ⅴ类水 | 水质类别 |
---|---|---|---|---|---|---|
1 | 0.147 | 0.130 | 0.332 | 0.860 | 0.193 | Ⅳ |
2 | 0.154 | 0.211 | 0.293 | 0.342 | 0.000 | Ⅳ |
3 | 0.079 | 0.328 | 0.228 | 0.334 | 0.030 | Ⅳ |
4 | 0.033 | 0.193 | 0.196 | 0.578 | 0.000 | Ⅳ |
5 | 0.037 | 0.375 | 0.064 | 0.500 | 0.000 | Ⅳ |
6 | 0.133 | 0.337 | 0.122 | 0.379 | 0.000 | Ⅳ |
7 | 0.024 | 0.168 | 0.269 | 0.402 | 0.138 | Ⅳ |
8 | 0.008 | 0.305 | 0.201 | 0.385 | 0.102 | Ⅳ |
9 | 0.000 | 0.262 | 0.277 | 0.199 | 0.263 | Ⅲ |
10 | 0.000 | 0.357 | 0.229 | 0.175 | 0.240 | Ⅱ |
11 | 0.000 | 0.311 | 0.240 | 0.184 | 0.257 | Ⅱ |
12 | 0.000 | 0.325 | 0.139 | 0.185 | 0.312 | Ⅱ |
13 | 0.006 | 0.543 | 0.102 | 0.303 | 0.055 | Ⅱ |
14 | 0.000 | 0.312 | 0.174 | 0.487 | 0.027 | Ⅳ |
Tab. 6
Fuzzy comprehensive evaluation results of water quality in August"
采样点 | Ⅰ类水 | Ⅱ类水 | Ⅲ类水 | Ⅳ类水 | Ⅴ类水 | 水质类别 |
---|---|---|---|---|---|---|
1 | 0.335 | 0.103 | 0.324 | 0.239 | 0.000 | Ⅰ |
2 | 0.146 | 0.193 | 0.189 | 0.355 | 0.118 | Ⅳ |
3 | 0.123 | 0.218 | 0.276 | 0.301 | 0.081 | Ⅳ |
4 | 0.155 | 0.199 | 0.209 | 0.255 | 0.183 | Ⅳ |
5 | 0.233 | 0.082 | 0.287 | 0.213 | 0.184 | Ⅲ |
6 | 0.079 | 0.148 | 0.436 | 0.177 | 0.161 | Ⅲ |
7 | 0.087 | 0.018 | 0.515 | 0.231 | 0.149 | Ⅲ |
8 | 0.069 | 0.108 | 0.318 | 0.373 | 0.129 | Ⅳ |
9 | 0.065 | 0.101 | 0.292 | 0.448 | 0.093 | Ⅳ |
10 | 0.171 | 0.220 | 0.261 | 0.214 | 0.133 | Ⅲ |
11 | 0.127 | 0.205 | 0.394 | 0.201 | 0.073 | Ⅲ |
12 | 0.125 | 0.336 | 0.307 | 0.153 | 0.081 | Ⅲ |
13 | 0.197 | 0.201 | 0.361 | 0.090 | 0.152 | Ⅲ |
14 | 0.137 | 0.253 | 0.384 | 0.094 | 0.132 | Ⅲ |
Tab. 7
Fuzzy comprehensive evaluation results of water quality in November"
采样点 | Ⅰ类水 | Ⅱ类水 | Ⅲ类水 | Ⅳ类水 | Ⅴ类水 | 水质类别 |
---|---|---|---|---|---|---|
1 | 0.099 | 0.032 | 0.400 | 0.468 | 0.000 | Ⅳ |
2 | 0.121 | 0.243 | 0.178 | 0.458 | 0.000 | Ⅳ |
3 | 0.132 | 0.034 | 0.348 | 0.302 | 0.184 | Ⅲ |
4 | 0.090 | 0.370 | 0.356 | 0.184 | 0.000 | Ⅱ |
5 | 0.107 | 0.359 | 0.325 | 0.209 | 0.000 | Ⅱ |
6 | 0.134 | 0.015 | 0.491 | 0.244 | 0.116 | Ⅲ |
7 | 0.110 | 0.297 | 0.168 | 0.425 | 0.000 | Ⅳ |
8 | 0.139 | 0.069 | 0.396 | 0.395 | 0.000 | Ⅲ |
9 | 0.127 | 0.014 | 0.462 | 0.397 | 0.000 | Ⅲ |
10 | 0.137 | 0.015 | 0.411 | 0.409 | 0.029 | Ⅲ |
11 | 0.124 | 0.276 | 0.412 | 0.188 | 0.000 | Ⅲ |
12 | 0.057 | 0.157 | 0.569 | 0.207 | 0.000 | Ⅲ |
13 | 0.137 | 0.231 | 0.462 | 0.171 | 0.000 | Ⅲ |
14 | 0.121 | 0.220 | 0.480 | 0.179 | 0.000 | Ⅲ |
[1] | 周俊. “地球表层”再讨论[J]. 自然灾害学报, 2004,13(6):1-7. |
[ Zhou Jun. The second discussion on the “Earth’s surface layer”[J]. Journal of Natural Disasters, 2004,13(6):1-7. ] | |
[2] | 杨永兴, 王世岩. 三江平原湿地生态系统 P、K 分布特征及季节动态研究[J]. 应用生态学报, 2001,12(4):522-526. |
[ Yang Yongxing, Wang Shiyan. Distribution characteristics and seasonal dynamics of phosphorus and potassium in wetland ecosystem in zhe sanjiang plain[J]. Journal of Applied Ecology, 2001,12(4):522-526. ] | |
[3] | 周亚军, 刘廷玺, 段利民, 等. 锡林河流域上游河谷湿地景观格局演变及其驱动力[J]. 干旱区研究, 2020,37(3):580-590. |
[ Zhou Yajun, Liu Tingxi, Duan Limin, et al. Driving force analysis and landscape pattern evolution in the up stream valley of Xilin River Basin[J]. Arid Zone Research, 2020,37(3):580-590. ] | |
[4] | 潘世兵, 杨贵羽, 唐蕴, 等. 黄旗海湿地水量模拟与平衡分析[J]. 干旱区研究, 2017,34(2):383-389. |
[ Pan Shibing, Yang Guiyu, Tang Yun, et al. Simulation of water inflow and water balance of Huangqihai Lake Wetland[J]. Arid Zone Research, 2017,34(2):383-389. ] | |
[5] | 缑倩倩, 屈建军, 王国华, 等. 中国干旱半干旱地区湿地研究进展[J]. 干旱区研究, 2015,32(2):213-220. |
[ Gou Qianqian, Qu Jianjun, Wang Guohua, et al. Progress of wetland researches in arid and semi-arid regions in China[J]. Arid Zone Research, 2015,32(2):213-220. ] | |
[6] | 周华荣. 干旱区湿地多功能景观研究的意义与前景分析[J]. 干旱区地理, 2005,28(1):16-20. |
[ Zhou Huarong. Prospect onmultifunctional landscapes of Marshes inArid Areas[J]. Arid Land Geography, 2005,28(1):16-20. ] | |
[7] |
Costanza R, D’arge R, Groot D E, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997,387:253-260.
doi: 10.1038/387253a0 |
[8] | Duarte C M, Middelburg J J, Caraco N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogesciences, 2005,2:1-8. |
[9] | 国家林业局. 中国湿地保护行动计划[M]. 北京: 中国林业出版社, 2000: 1-2. |
[ State Forestry Administration. China Wetland Protection Action Plan[M]. Beijing: China Forestry Press, 2000: 1-2. ] | |
[10] | 崔保山, 杨志峰. 湿地学[M]. 北京: 北京师范大学出版社, 2006: 39-40. |
[ Cui Baoshan, Yang Zhifeng. Wetland Science[M]. Beijing: Beijing Normal University Press, 2006: 39-40. ] | |
[11] | Mitsch W J, Gosselink J G. Wetlands[M]. New York: Van Nostrand Reinhold, 2000: 2-5. |
[12] | 田应兵, 熊明标, 宋光煜. 若尔盖高原湿地土壤的恢复演替及其水分与养分变化[J]. 生态学杂志, 2005,24(1):21-25. |
[ Tian Yingbing, Xiong Mingbiao, Song Guangyu. Restoration succession of wetland soils and their changes of water and nutrient in Ruoergai Plateau[J]. Chinese Journal of Ecology, 2005,24(1):21-25. ] | |
[13] |
Saeed A, Hashmi I. Evaluation of anthropogenic effects on water quality and bacterial diversity in Rawal Lake, Islamabad[J]. Environmental Monitoring and Assessment, 2014,186(5):2785-2793.
doi: 10.1007/s10661-013-3579-3 pmid: 24352868 |
[14] | Alves R I S, Machado C S, Beda C F, et al. Water quality assessment of the Pardo River Basin, Brazil: A multivariate approach using limnological parameters metal concentrations and indicator bacteria[J]. Archives of Environmenal and Toxicology, 2018,75(2):199-212. |
[15] | 薛伟锋, 褚莹倩, 刘强, 等. 主成分分析和模糊综合评价法在大连市地下水水质评价中的应用研究[J]. 辽宁大学学报(自然科学版), 2020,47(3):218-226. |
[ Xue Weifeng, Chu Yingqian, Liu Qiang, et al. Groundwater quality assessment in Dalian based on principal component analysis and fuzzy comprehensive evaluation[J]. Journal of Liaoning University(Natural Science Edition), 2020,47(3):218-226. ] | |
[16] | 尹发能, 向燕芸. 大冶湖水质模糊综合评价[J]. 湿地科学, 2016,14(3):428-432. |
[ Yin Faneng, Xiang Yanyun. Fuzzy comprehensive evaluation of water quality in Daye Lake[J]. Wetland Science, 2016,14(3):428-432. ] | |
[17] | 周玲, 郭胜利, 张涛, 等. 洪泽湖水质模糊综合评价研究[J]. 江苏农业科学, 2012,40(2):289-291. |
[ Zhou Ling, Guo Shengli, Zhang Tao, et al. Study on fuzzy comprehensive evaluation of water quality of Hongze Lake[J]. Jiangsu Agricultural Sciences, 2012,40(2):289-291. ] | |
[18] | 陈宇. 交溪干流水质模糊综合评价研究[J]. 水利科技, 2015(4):6-10. |
[ Chen Yu. Study on fuzzy comprehensive evaluation of water quality in Jiaoxi main stream[J]. Hydraulic Science and Technology, 2015(4):6-10. ] | |
[19] | 王玉芬, 郝丽雯. 黄河万家寨水库水质模糊综合评价[C]// 中国环境科学学会. 2018中国环境科学学会科学技术年会论文集(第三卷). 北京: 中国环境科学学会, 2018: 7. |
[ Wang Yufen, Hao Liwen. Fuzzy comprehensive evaluation of water quality of Wanjiazhai Reservoir on the Yellow River[C]// Chinese Society of Environmental Sciences. Proceedings of the science and Technology Annual Meeting of the Chinese society of Environmental Sciences in 2018 (Volume III). Beijing: Chinese society of Environmental Sciences, 2018: 7. ] | |
[20] | 敖成欢, 钟九生, 赵梦, 等. 基于模糊综合法和灰色关联法的百花湖水质评价[J]. 水土保持通报, 2020,40(1):116-122, 129. |
[ Ao Chenghuan, Zhong Jiusheng, Zhao Meng, et al. Evaluation on water quality of Baihua Lake based on fuzzy comprehensive method and grey correlation method[J]. Bulletin of Soil and Water Conservation, 2020,40(1):116-122, 129. ] | |
[21] | 白维东, 亢小云, 范金成, 等. 宁夏阅海湖水质综合评估[J]. 宁夏农林科技, 2012,53(2):57-60. |
[ Bai Weidong, Kang Xiaoyun, Fan Jincheng, et al. Comprehensive water quality assessment of Yuehai Lake in Ningxia[J]. Ningxia Agricultural and Forestry Science and Technology, 2012,53(2):57-60. ] | |
[22] | 钟艳霞, 罗玲玲, 虎雪姣, 等. 银川市阅海湿地水质的时空变化[J]. 贵州农业科学, 2013,41(6):175-178. |
[ Zhong Yanxia, Luo Lingling, Hu Xuejiao, et al. Spatial and temporal changes of water quality in Yinchuan Yuehai Wetlands[J]. Guizhou Agricultural Sciences, 2013,41(6):175-178. ] | |
[23] | 李世龙, 雷兴碧, 邱小琮, 等. 银川阅海湖水生生态系统健康评价[J]. 南水北调与水利科技, 2020,18(3):168-173, 200. |
[ Li Shilong, Lei Xingbi, Qiu Xiaocong, et al. Health assessment of aquatic ecosystem of Yuehai Lake[J]. South-to-North Water Transfer and Water-Science & Technology, 2020,18(3):168-173, 200. ] | |
[24] | 谢俊斐, 米文宝. 银川阅海湿地水质营养状况评价[J]. 中国水土保持, 2013(2):51-54. |
[ Xie Junfei, Mi Wenbao. Evaluation of water quality and nutrition status of Yuehai wetland in Yinchuan[J]. Soil and Water Conservation in China, 2013(2):51-54. ] | |
[25] | 黄小琴, 张一冰, 李英, 等. 银川市湖泊—地下水转化关系——以阅海湖为例[J]. 干旱区研究, 2019,36(6):1-10. |
[ Huang Xiaoqin, Zhang Yibing, Li Ying, et al. Conversion relationship between lake and groundwater in Yinchuan City: A case study for the Yuehai Lake[J]. Arid Zone Research, 2019,36(6):1-10. ] | |
[26] | 曾永, 樊引琴, 王丽伟, 等. 水质模糊综合评价法与单因子指数评价法比较[J]. 人民黄河, 2007,29(2):45-65. |
[ Zeng Yong, Fan Yinqin, Wang Liwei, et al. Comparison of fuzzy comprehensive evaluation method and single factor index evaluation method for water quality[J]. Yellow River, 2007,29(2):45-65. ] | |
[27] | 高海勇. 模糊综合评价在东湖水环境质量评价中的应用[J]. 科技情报开发与经济, 2007,17(23):161-167. |
[ Gao Haiyong. Application of fuzzy comprehensive evaluation in water environment quality assessment of East Lake[J]. Science and Technology Information Development and Economy, 2007,17(23):165-167. ] | |
[28] | 刘春凤, 翟瑞彩. 基于模糊数学的水质分析[J]. 天津大学学报, 2003,36(1):72-76. |
[ Liu Chunfeng, Zhai Ruicai. Analysis of water quality based on fuzzy mathematics[J]. Journal of Tianjin University, 2003,36(1):72-76. ] | |
[29] |
He Biyan, Dai Minhan, Zhai Weidong, et al. Hypoxia in the upper reaches of the Pearl River estuary and its maintenance mechanisms: A synjournal based on multiple year observations during 2000-2008[J]. Marine Chemistry, 2014,167:13-24.
doi: 10.1016/j.marchem.2014.07.003 |
[30] | 张莹莹, 张经, 吴莹, 等. 长江口溶解氧的分布特征及影响因素研究[J]. 环境科学, 2007,28(8):1649-1654. |
[ Zhang Yingying, Zhang Jing, Wu Ying, et al. Charateristics of dissolved oxygen and its affecting factors in the Yangtze estuary[J]. Environmental Science, 2007,28(8):1649-1654. ] | |
[31] | 饶国铨. 城市供水末端饮用水总有机碳TOC监测分析[J]. 节能与环保, 2019(6):68-69. |
[ Rao Guoquan. TOC monitoring and analysis of total organic carbon in drinking water at the end of urban water supply[J]. Energy Conservation and Environmental Protection, 2019(6):68-69. ] |
[1] | ZHANG Sheng, ZHANG Tao, DUAN Wenyu, XU Li, Gu Jinyang, ZHANG Wei, LI Simin. Evaluation of the environmental quality of surface water in Chengde using improved methods [J]. Arid Zone Research, 2024, 41(1): 50-59. |
[2] | WEN Miaoxia, HE Xuegao, LIU Huan, ZHANG Jing, LUO Chen, JIA Fengming, WANG Yigui, HU Yunyun. Analysis of the spatiotemporal variation characteristics and driving factors of grassland vegetation cover in Ningxia based on geographical detectors [J]. Arid Zone Research, 2023, 40(8): 1322-1332. |
[3] | CUI Yang,WANG Dai,GAO Ruina,AN Xingqin. Atmospheric environmental capacity characteristics and influencing factors of Ningxia over the past 60 years [J]. Arid Zone Research, 2023, 40(6): 885-895. |
[4] | YANG Jianling,ZHANG Suzhao,MA Junbin,WANG Dai,Huang Yin. The impact of the North Atlantic sea surface temperature anomaly on precipitation anomaly in Ningxia from late spring to early summer and associated mechanisms [J]. Arid Zone Research, 2023, 40(5): 703-714. |
[5] | SHAO Jian,ZHANG Suzhao,CHEN Min,LI Qiang,ZHENG Youjiong,CHENG Yao,MA Ning. Application of FY-4A satellite data in short-time severe precipitation of Ningxia [J]. Arid Zone Research, 2023, 40(2): 163-172. |
[6] | HUANG Ying, WANG Suyan, MA Yang, WANG Dai, ZHANG Wen, WANG Fan. Change characteristics and circulation anomaly analysis of cold wave in Ningxia over the past 60 years [J]. Arid Zone Research, 2023, 40(11): 1718-1728. |
[7] | NIU Zilu, WANG Lei, QI Tuoye, ZHANG Yijing, SHEN Jianxiang, YANG Zhuqing, WANG Entian, JIANG Shuting. Soil salinization characteristics in irrigation region of Yellow River of Hongsipu, Ningxia [J]. Arid Zone Research, 2023, 40(11): 1785-1796. |
[8] | ZHANG Hao, DANG Xiaohong, MENG Zhongju, GAO Yong, LIU Yang, QIN Qingchuan. Study on main aeolian sand environment characteristics and formation mechanism in Wuzhumuqin Sandy Land [J]. Arid Zone Research, 2023, 40(10): 1687-1697. |
[9] | HUANG Zhou,YANG Guang,SU Jun,LI Xiaolong,LIU Bing,HE Xinlin,QIAO Changlu,LI Pengfei,WANG Chunxia,ZHAO Li. Soil quality evaluation of returning farmland to Manas River irrigation area under the constraints of the“Three Red Lines” strategy of water resources [J]. Arid Zone Research, 2022, 39(6): 1942-1951. |
[10] | DING Qizhen,LEI Mi,ZHOU Jinlong,ZHANG Jie,XU Dongsheng. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River [J]. Arid Zone Research, 2022, 39(3): 829-840. |
[11] | WANG Dai,WANG Suyan,WANG Fan,LI Xin,YANG Jianling. Characteristics of summer extremely high temperature in Ningxia in connection with Arctic sea ice [J]. Arid Zone Research, 2021, 38(5): 1285-1294. |
[12] | WANG Suyan,LI Xin,WANG Fan,MA Yang,ZHANG Wen,HUANG Ying,GAO Ruina. Evolution characteristics of precipitation resources pattern in Ningxia [J]. Arid Zone Research, 2021, 38(3): 733-746. |
[13] |
YU Rui-xin, TIAN Na, WANG Xing, WANG Lei, YANG Xin-guo, JIANG Qi, ZHOU Juan.
Species Diversity and Co-Occurrence Pattern at Patch Scale in Stipa breviflora Desert Steppe [J]. Arid Zone Research, 2019, 36(2): 444-450. |
[14] | LUO Rui-Min, GUO Liang, Cheng-Ji-Min. Responses of grassland productivity to climate variability at Yunwushan during the past 20 years [J]. , 2018, 35(01): 77-84. |
[15] | CHEN Xiao-Hong, DUAN Zheng-Hu, LUO Tian-Feng, TAN Ming-Liang. Relationship between Particulate Nutrient Content and Nutrient Content in Bulk Soil during Reversal of Desertification [J]. , 2013, 30(6): 992-997. |
|