Arid Zone Research ›› 2021, Vol. 38 ›› Issue (3): 650-664.doi: 10.13866/j.azr.2021.03.07
• Soil Resources • Previous Articles Next Articles
WANG Jing1(),FANG Feng2(),HUANG Pengcheng2,YUE Ping1,LI Jiangping3,WANG Dawei2
Received:
2020-04-20
Revised:
2021-03-24
Online:
2021-05-15
Published:
2021-06-17
Contact:
Feng FANG
E-mail:wangjing1102@126.com;fangfeng0802@126.com
WANG Jing,FANG Feng,HUANG Pengcheng,YUE Ping,LI Jiangping,WANG Dawei. Evaluation of Advanced Microwave Scanning Radiometer for EOS(AMSR-E) soil moisture products over China and its application in drought monitoring[J].Arid Zone Research, 2021, 38(3): 650-664.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Relationship of soil moisture between AMSR-E and 10 cm observation of agricultural meteorological station under different crop region"
一季稻 | 元麦 | 麻类 | 冬小麦 | 向日葵 | 夏玉米 | 大豆 | 大麦 | 套玉米 | 宿根蔗 | 马铃薯 | |
---|---|---|---|---|---|---|---|---|---|---|---|
样本量 | 1401 | 3 | 103 | 26945 | 54 | 6577 | 3690 | 21 | 798 | 628 | 2085 |
相关系数 | 0.193** | -0.167 | 0.456** | 0.224** | -0.248 | 0.295** | 0.247** | 0.209 | 0.249** | -0.138** | 0.492** |
新植蔗 | 早稻 | 春小麦 | 春玉米 | 晚稻 | 普通棉 | 棉花 | 油菜 | 烟草 | 牧草 | 高粱 | |
样本量 | 229 | 407 | 4722 | 11683 | 361 | 5523 | 116 | 2395 | 166 | 4414 | 312 |
相关系数 | 0.086 | 0.200** | 0.191** | 0.328** | 0.334** | 0.363** | 0.559** | 0.302** | 0.315** | 0.523** | 0.579** |
甘蔗 | 甘薯 | 甜菜 | 白地 | 芝麻 | 花生 | 莜麦 | 谷子 | 长绒棉 | 青稞 | 其他作物 | |
样本量 | 25 | 848 | 334 | 37808 | 38 | 759 | 57 | 760 | 5 | 523 | 4470 |
相关系数 | 0.322 | 0.300** | -0.161** | 0.444** | 0.299 | 0.171** | 0.305** | 0.391** | -0.352 | 0.235** | 0.260** |
Tab. 3
Relationship of soil moisture between AMSR-E and 20 cm observation of agricultural meteorological station under different crop regions"
一季稻 | 元麦 | 麻类 | 冬小麦 | 向日葵 | 夏玉米 | 大豆 | 大麦 | 套玉米 | 宿根蔗 | 马铃薯 | |
---|---|---|---|---|---|---|---|---|---|---|---|
样本量 | 1374 | 3 | 103 | 26715 | 54 | 6538 | 3690 | 18 | 787 | 627 | 2054 |
相关系数 | 0.151** | -0.305 | 0.384** | 0.245** | -0.338* | 0.298** | 0.233** | 0.042 | 0.261** | -0.185** | 0.502** |
新植蔗 | 早稻 | 春小麦 | 春玉米 | 晚稻 | 普通棉 | 棉花 | 油菜 | 烟草 | 牧草 | 高粱 | |
样本量 | 228 | 332 | 4690 | 11643 | 364 | 5476 | 114 | 2386 | 165 | 4399 | 309 |
相关系数 | 0.066 | 0.170** | 0.147** | 0.314** | 0.129* | 0.332** | 0.528** | 0.287** | 0.384** | 0.513** | 0.513** |
甘蔗 | 甘薯 | 甜菜 | 白地 | 芝麻 | 花生 | 莜麦 | 谷子 | 长绒棉 | 青稞 | 其他作物 | |
样本量 | 25 | 844 | 334 | 37560 | 38 | 765 | 57 | 761 | 5 | 522 | 4434 |
相关系数 | 0.462** | 0.280** | 0.107 | 0.433** | 0.204 | 0.145** | 0.251 | 0.374** | -0.348 | 0.153** | 0.234** |
Tab. 4
Relationship of soil moisture between AMSR-E and 10 cm observation of agricultural meteorological station in different regions"
东北 | 华北 | 华东 | 华南 | 华中 | 西北 | 西南 | ||
---|---|---|---|---|---|---|---|---|
多种作物类型 | 样本量 | 15755 | 36325 | 10512 | 12347 | 2860 | 28781 | 11982 |
相关系数 | 0.289** | 0.207** | 0.065** | 0.289** | 0.128** | 0.280** | 0.180** | |
白地 | 样本量 | 7319 | 14609 | 1805 | 766 | 2862 | 8082 | 2365 |
相关系数 | 0.307** | 0.255** | 0.317** | 0.163** | 0.337** | 0.449** | 0.354** |
Tab. 5
Region features for relationship of correlation coefficients of 10 cm and 20 cm between AMSR-E and agricultural meteorological station"
全国 | 东北 | 华北 | 华东 | 华中 | 华南 | 西南 | 西北 | ||
---|---|---|---|---|---|---|---|---|---|
多种作物类型 | 相关系数 | 0.863** | 0.838** | 0.849** | 0.899** | 0.930** | 0.692** | 0.732** | 0.924** |
样本数 | 629 | 80 | 180 | 64 | 70 | 23 | 75 | 134 | |
白地 | 相关系数 | 0.738** | 0.863** | 0.606** | 0.906** | 0.910** | 0.828** | 0.377* | 0.849** |
样本数 | 476 | 75 | 153 | 43 | 45 | 16 | 35 | 106 |
Tab. 6
Relationship of correlation coefficients of 10 cm and 20 cm between AMSR-E and agricultural meteorological station in different crop regions"
一季稻 | 其他作物 | 冬小麦 | 向日葵 | 夏玉米 | 大豆 | 套玉米 | 宿根蔗 | 新植蔗 | 早稻 | |
---|---|---|---|---|---|---|---|---|---|---|
相关系数 | 0.768** | 0.668** | 0.716** | 0.356 | 0.884** | 0.727** | 0.939** | 0.928* | 0.991** | 0.046 |
样本数 | 46 | 66 | 248 | 4 | 128 | 65 | 16 | 5 | 4 | 15 |
春小麦 | 春玉米 | 晚稻 | 普通棉 | 棉花 | 油菜 | 烟草 | 牧草 | 甘蔗 | 甘薯 | |
相关系数 | 0.891** | 0.917** | 0.694** | 0.974** | 0.949** | 0.736** | 0.149 | 0.919** | 0.989** | -0.005 |
样本数 | 70 | 164 | 30 | 64 | 29 | 56 | 6 | 44 | 5 | 18 |
甜菜 | 芝麻 | 花生 | 谷子 | 青稞 | 马铃薯 | 高粱 | 麻类 | |||
相关系数 | -0.919 | 0.997** | 0.961** | 0.897** | 0.972** | 0.870** | 0.966** | 0.760 | ||
样本数 | 4 | 3 | 25 | 14 | 7 | 41 | 11 | 6 |
Tab. 7
Relationship of soil moisture between AMSR-E, agricultural meteorological station and automatic station"
站点 | 同AMSR-E土壤水分相关性 | 同农试站观测土壤水分相关性 | 站点 | 同AMSR-E土壤水分相关性 | 同农试站观测土壤水分相关性 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
相关 系数 | 样本量 | 相关 系数 | 样本量 | 地表作物类型 | 相关 系数 | 样本量 | 相关系数 | 样本量 | 地表作物类型 | ||
敦煌 | 0.002 | 241 | 0.266 | 16 | 白地、普通棉 | 岷县 | -0.058 | 260 | 0.811** | 33 | 马铃薯、其他作物、白地 |
永昌 | -0.034 | 204 | 0.614* | 16 | 白地、大麦 | 文县北 | -0.006 | 302 | 0.609** | 52 | 冬小麦、夏玉米、白地 |
凉州东 | 0.077 | 216 | 0.614** | 25 | 白地、春小麦、套玉米 | 武山 | 0.149* | 269 | 0.870** | 19 | 冬小麦、白地 |
景泰 | 0.071 | 251 | 0.929** | 20 | 白地 | 成县东 | 0.229** | 325 | 0.665** | 39 | 冬小麦、春玉米、白地 |
会宁 | 0.167** | 243 | 0.745** | 19 | 白地、春小麦 | 两当 | 0.250** | 328 | |||
崆峒 | 0.079 | 259 | 0.450** | 33 | 冬小麦、春玉米、白地 | 敦煌东 | 0.223* | 85 | |||
泾川 | 0.090 | 265 | 0.751** | 29 | 冬小麦、高粱、白地 | 安定西 | 0.184** | 258 | |||
宁县 | -0.039 | 256 | 0.948** | 17 | 冬小麦、白地 | 秦安 | 0.148* | 258 | |||
玛曲 | -0.131 | 211 | 0.775** | 20 | 白地、牧草 | 张家川 | 0.084 | 278 | |||
合作 | -0.141* | 217 | 0.751** | 31 | 牧草、青稞 | 成县西 | 0.242** | 328 |
[1] |
Mccoll K A, Alemohammad S H, Akbar R, et al. The global distribution and dynamics of surface soil moisture[J]. Nature Geoscience, 2017,10(2):100-104.
doi: 10.1038/ngeo2868 |
[2] |
Chen Y Y, Yang K, Qin J, et al. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013,118(10):4466-4475.
doi: 10.1002/jgrd.50301 |
[3] | Engman E T. Hydrologic research before and after Agristars[J]. IEEE Transactions on Geoscience & Remote Sensing, 1986, GE-24(1):5-11. |
[4] |
Sahoo A K, Houser P R, Ferguson C, et al. Evaluation of AMSR-E soil moisture results using the in-situ data over the little river experimental watershed, georgia[J]. Remote Sensing of Environment, 2008,112:3142-3152.
doi: 10.1016/j.rse.2008.03.007 |
[5] | Gruhier C, Rosnay P D, Kerr Y, et al. Evaluation of AMSR-E soil moisture product based on ground measurements over temperate and semi-arid regions[J]. Geophysical Research Letters, 2008,35(10):L10405. |
[6] |
Draper C S, Walker J P, Steinle P J, et al. An evaluation of AMSR-E derived soil moisture over Australia[J]. Remote Sensing of Environment, 2009,113(4):703-710.
doi: 10.1016/j.rse.2008.11.011 |
[7] |
Rüdiger C, Calvet J C, Gruhier C, et al. An intercomparison of ERS-Scat and AMSR-E soil moisture observations with model simulations over france[J]. Journal of Hydrometeorology, 2009,10(2):431-447.
doi: 10.1175/2008JHM997.1 |
[8] |
Choi M. Evaluation of multiple surface soil moisture for Korean regional flux monitoring network sites: Advanced Microwave Scanning Radiometer E, land surface model, and ground measurements[J]. Hydrological Processes, 2012,26:597-603.
doi: 10.1002/hyp.v26.4 |
[9] |
Jackson T J, Cosh M H, Bindlish R. Validation of Advanced Microwave Scanning Radiometer soil moisture products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(12):4256– 4272.
doi: 10.1109/TGRS.2010.2051035 |
[10] |
Chaurasia S, Tung D T, Thapliyal P K, et al. Assessment of the AMSR-E soil moisture product over India[J]. International Journal of Remote Sensing, 2011,32(23):7955-7970.
doi: 10.1080/01431161.2010.531782 |
[11] |
Brocca L, Hasenauer S, Lacava T, et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe[J]. Remote Sensing of Environment, 2011,115:3390-3408
doi: 10.1016/j.rse.2011.08.003 |
[12] |
Lei F N, Crow W T, Shen H F, et al. The impact of local acquisition time on the accuracy of microwave surface soil moisture retrievals over the contiguous United States[J]. Remote Sensing, 2015,7:13448-13465.
doi: 10.3390/rs71013448 |
[13] |
Kolassa J, Gentine P, Prigent C, et al. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation[J]. Remote Sensing of Environment, 2017,195:202-217.
doi: 10.1016/j.rse.2017.04.020 |
[14] | 陈洁. AMSR-E土壤湿度产品在我国西北部地区的精度验证[D]. 北京: 中国气象科学研究院, 2010. |
[ Chen Jie. Validation of AMSR-E Soil Moisture Products in the Northwest of China[D]. Beijing: Chinese Academy of Meteorological Sciences, 2010. ] | |
[15] |
Zhang A Z, Jia G S, Wang H S, et al. Evaluation of AMSR-E: Derived soil moisture over northern China[J]. Atmospheric and Oceanic Science Letters, 2011,4(4):223-228.
doi: 10.1080/16742834.2011.11446933 |
[16] | Wu S L, Chen J. Validation of AMSR-E soil moisture products in Xilinhot grassland. Proceedings of Spie the International Society for Optical Engineering, 2012,8531: 85311J-85311J-7. |
[17] |
Qiu J X, Mo X G, Liu S X, et al. Intercomparison of microwave remote-sensing soil moisture data sets based on distributed eco-hydrological model simulation and in situ measurements over the North China Plain[J]. International Journal of Remote Sensing, 2013,34(19):6587-6610.
doi: 10.1080/01431161.2013.788799 |
[18] |
Wigneron J P, Kerr Y, Waldteufel P, et al. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields[J]. Remote Sensing of Environment, 2007,107(4):639-655.
doi: 10.1016/j.rse.2006.10.014 |
[19] |
Zeng J Y, Li Z, Chen Q, et al. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations[J]. Remote Sensing of Environment, 2015,163:91-110.
doi: 10.1016/j.rse.2015.03.008 |
[20] |
Su Z, Wen J, Dente L, et al. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J]. Hydrology and Earth System Sciences, 2011,15(7):2303-2316.
doi: 10.5194/hess-15-2303-2011 |
[21] |
Zhang Q, Fan K K, Singh V P, et al. Evaluation of remotely sensed and reanalysis soil moisture against in situ observations on the Himalayan-Tibetan plateau[J]. Journal of Geophysical Research: Atmospheres, 2018,123:7132-7148.
doi: 10.1029/2017JD027763 |
[22] | Zhang T T, Gebremichael M, Koppa A, et al. An evaluation of soil moisture from AMSR-E over source area of the Yellow River, China[J]. Sciences in Cold and Arid Regions, 2019,11(6):461-469. |
[23] | 席家驹, 文军, 田辉, 等. AMSR-E遥感土壤湿度产品在青藏高原地区的适用性[J]. 农业工程学报, 2014,30(13):194-202. |
[ Xi Jiaju, Wen Jun, Tian Hui, et al. Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(13):194-202. ] | |
[24] | 李哲, 王磊, 王林 , 等. 基于AMSR-E反演青藏高原夏季表层土壤湿度[J]. 高原气象, 2017,36(1):67-78. |
[ Li Zhe, Wang Lei, Wang Lin, et al. Top-layer soil moisture retrieval over the Qinghai-xizang Plateau in summer based on AMSR-E data[J]. Plateau Meteorology, 2017,36(1):67-78. ] | |
[25] | 李昂, 陆其峰, 杨晓峰, 等. AMSR-E卫星反演土壤湿度与ECWMFNECP再分析土壤湿度比较分析[J]. 遥感技术与应用, 2013,28(4):666-673. |
[ Li Ang, Lu Qifeng, Yang Xiaofeng, et al. AMSR-E soil moisture compared with ECWMF and NECP soil moisture[J]. Remote Sensing Technology and Application, 2013,28(4):666-673. ] | |
[26] | 孙博, 钱静, 陈曦, 等. 常见遥感干旱监测指标在哈萨克斯坦的一致性分析[J]. 干旱区研究, 2020,37(3):126-133. |
[ Sun Bo, Qian Jing, Chen Xi, et al. Consistency and comparison among remote sensing drought indices and SMAP soil moisture in Kazakhstan[J]. Arid Zone Research, 2020,37(3):126-133. ] | |
[27] | FAO, IIASA, ISRIC, et al. Harmonized World Soil Database (version 1. 1)[R]. FAO, Rome, Italy and IIASA,Laxenburg,Austria, 2009. |
[28] | Dorigo W A, Wagner W, Hohensinn R, et al. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences Discussions, 2011,15(5):1675-1698. |
[29] | 中华人民共和国国家标准GB/T 20481-2006. 气象干旱等级[M]. 北京: 中国标准出版社, 2018. |
[ National Standards of the People’s Republic of China,GB/T 20481-2006. Grades of Meteorological Drought[M]. Beijing: Standards Press of China, 2018. ] | |
[30] | 刘广岳, 谢昌卫, 杨淑华. 青藏公路沿线多年冻土区活动层起始冻融时间的时空变化特征和影响因素[J]. 冰川冻土, 2018,40(6):1067-1078. |
[ Liu Guangyue, Xie Changwei, Yang Shuhua. Spatial and temporal variation characteristics on the onset dates of freezing and thawing of active layer and its influence factors in permafrost regions along the Qinghai Tibet highway[J]. Journal of Glaciology and Geocryology, 2018,40(6):1067-1078. ] | |
[31] | 魏宝成, 银山, 贾旭, 等. 蒙古高原植物生长期土壤水分时空变化特征[J]. 干旱区研究, 2016,33(3):467-475. |
[ Wei Baocheng, Yin Shan, Jia Xu, et al. Spatiotemporal variation of soil moisture content in the Mongolia Plateau in plant growing season[J]. Arid Zone Research, 2016,33(3):467-475. ] |
[1] | LI Jiannan, SHI Haibin, MIAO Qingfeng, SHAN Dan, RONG Hao, WEN Yaqin. Effect of environmental factors on the transpiration water consumption of various artificial arbor stands [J]. Arid Zone Research, 2023, 40(8): 1312-1321. |
[2] | JIJI Jiamen, CHENG Yiben, CHEN Linglong, WAN Pengxiang, ZHANG Yihui, YANG Wenbin, BAI Xuying, WANG Tao. Dynamic changes in soil moisture and its response to rainfall in Pinus sylvestris var. mongolica plantation in Horqin Sandy Land [J]. Arid Zone Research, 2023, 40(5): 756-766. |
[3] | XUE Zhixuan, ZHANG Li, WANG Xinjun, LI Yongkang, ZHANG Guanhong, LI Peiyao. Downscaling analysis of SMAP soil moisture products in Gurbantunggut Desert [J]. Arid Zone Research, 2023, 40(4): 583-593. |
[4] | SHI Jianzhou, LIU Xiande, TIAN Qing, YU Pengtao, WANG Yanhui. Rainfall response of soil water content on a slope of Larix principis-rupprechtii plantation in the semi-arid Liupan Mountains [J]. Arid Zone Research, 2023, 40(4): 594-604. |
[5] | YANG Shuangqi, SONG Naiping, WANG Xing, CHEN Xiaoying, CHANG Daoqin. Spatiotemporal characteristics of sierozem and aeolian soil moisture levels in a desert steppe [J]. Arid Zone Research, 2023, 40(10): 1625-1636. |
[6] | YUAN Limin,YANG Zhiguo,XUE Bo,GAO Haiyan,HAN Zhaorigetu. Heterogeneity of soil moisture of blowouts in HulunBuir grassland [J]. Arid Zone Research, 2022, 39(5): 1598-1606. |
[7] | QIANG Yuquan,XU Xianying,ZHANG Jinchun,LIU Hujun,GUO Shujiang,DUAN Xiaofeng. Characteristics of stem sap flow of Haloxylon ammodendron and its response to environmental factors in Qingtu Lake, Minqin [J]. Arid Zone Research, 2022, 39(4): 1143-1154. |
[8] | YANG Ziwei,CHE Zihan,LIU Fumei,CHEN Kelong. Precipitation gradient influence on daily greenhouse gas emission fluxes from a Qinghai Lake wetland [J]. Arid Zone Research, 2022, 39(3): 754-766. |
[9] | WANG Jia,TIAN Qing,WANG Lide,HE Hongsheng,SONG Dacheng,GUO Chunxiu. Effects of different years of returning farmland on soil moisture and species diversity in Minqin Qingtu Lake area [J]. Arid Zone Research, 2022, 39(2): 605-614. |
[10] | CHENG Mengyuan,CAO Guangchao,ZHAO Meiliang,DIAO Erlong,HE Qixin,GAO Siyuan,QIU Xunxun,CHENG Guo. Temporal and spatial variation characteristics and influencial factors of soil moisture in the Xiangride-Qaidam River Basin [J]. Arid Zone Research, 2022, 39(2): 615-624. |
[11] | SONG Liangcui,MA Weiwei,LI Guang,LONG Yongchun,CHANG Wenhua. Effect of water on nitrogen mineralization in degraded succession of Gahai Wetland [J]. Arid Zone Research, 2022, 39(1): 165-175. |
[12] | ZHANG Hailiang,LI Huoqing,Ali Mamtimin. Simulation characteristics of planetary boundary layer parameterizations: A case study in Xinjiang during summer [J]. Arid Zone Research, 2021, 38(1): 154-162. |
[13] | WANG Haijiao,TIAN Lihui,ZHANG Dengshan,WANG Qiaoyu. Variation of soil moisture content in vegetation restoration area of sandy land at east shore of Qinghai Lake [J]. Arid Zone Research, 2021, 38(1): 76-86. |
[14] | ZHANG Yuan-hao, Ala Musa, YIN Jia-wang, JIANG Shao-yan. Spatial and temporal variations in sand dune soil moisture content and groundwater depth [J]. Arid Zone Research, 2020, 37(6): 1427-1436. |
[15] | WANG Bo, DUAN Yu-xi, WANG Wei-feng, LI Xiao-jing, LIU Yuan, LIU Zong-qi. Spatial and temporal variability of soil moisture content during vegetation succession in sand-binding areas [J]. Arid Zone Research, 2020, 37(4): 881-889. |
|