Arid Zone Research ›› 2025, Vol. 42 ›› Issue (9): 1640-1649.doi: 10.13866/j.azr.2025.09.08
• Plant Ecology • Previous Articles Next Articles
ZHU Zhaohua(
), ZHAI Yixiao, LI Xinrong, Miao Yingxiang, MA Tong, LI Shanjia(
)
Received:2025-01-22
Revised:2025-04-16
Online:2025-09-15
Published:2025-09-16
Contact:
LI Shanjia
E-mail:zhuzhaohua12@163.com;lishanjia@lut.edu.cn
ZHU Zhaohua, ZHAI Yixiao, LI Xinrong, Miao Yingxiang, MA Tong, LI Shanjia. Community composition and functionalities of endophytic microorganisms in Haloxylon ammodendron seeds[J].Arid Zone Research, 2025, 42(9): 1640-1649.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 3
Comparative results of 16S rRNA gene sequences of endophytic bacteria in H. ammodendron seeds"
| 菌株 | 比对结果 | 相似度/% | NCBI序列号 | GenBank登录号 |
|---|---|---|---|---|
| HB-1 | 高空芽孢杆菌Bacillus altitudinis | 99.88 | NR_042337.1 | PQ774797 |
| HB-2 | 短小芽孢杆菌Bacillus pumilus | 98.94 | NR_115334.1 | PQ774798 |
| HB-3 | 空气芽孢杆菌Bacillus aerius | 99.88 | NR_118439.1 | PQ836096 |
| HB-4 | 阿氏普里斯特氏菌Priestia aryabhattai | 100.00 | NR_115953.1 | PQ774800 |
| HB-5 | 玫瑰色考克氏菌Kocuria rosea | 99.89 | NR_044871.1 | PQ836097 |
| HB-6 | 漳州芽孢杆菌Bacillus zhangzhouensis | 99.89 | NR_148786.1 | PQ836098 |
| HB-7 | 耐寒短杆菌Peribacillus frigoritolerans | 98.25 | NR_115064.1 | PQ774803 |
| HB-8 | 巨大芽孢杆菌Priestia megaterium | 97.54 | NR_116873.1 | PQ836099 |
| HB-9 | 巨大芽孢杆菌Priestia megaterium | 98.70 | NR_112636.1 | PQ774805 |
| HB-10 | 沙福芽孢杆菌Bacillus safensis | 97.21 | NR_041794.1 | PQ836100 |
| HB-11 | 短小芽孢杆菌Bacillus pumilus | 98.58 | NR_043242.1 | PQ836101 |
| HB-12 | 地衣芽孢杆菌Bacillus licheniformis | 99.78 | NR_074923.1 | PQ774804 |
| HB-13 | 嗜糖土地芽孢杆菌Terribacillus aidingensis | 97.90 | NR_114288.1 | PQ836102 |
Tab. 4
Plant growth-promoting properties of the strains"
| 菌株 | IAA产量/(μg·mL-1) | 固氮 | 解磷(D/d) | 产铁载体 | 耐盐 | 耐碱 |
|---|---|---|---|---|---|---|
| HB-1 | - | + | 1.50±0.04ef | - | - | + |
| HB-2 | - | + | 1.54±0.09de | - | - | + |
| HB-3 | - | + | 2.36±0.13a | - | - | + |
| HB-4 | 18.48±2.70a | + | - | - | - | - |
| HB-5 | 10.67±0.26b | + | - | - | - | + |
| HB-6 | - | + | 1.77±0.05c | - | + | + |
| HB-7 | 0.25±0.16d | + | - | + | - | - |
| HB-8 | 5.22±2.14c | - | 1.40±0.03f | + | - | - |
| HB-9 | 8.43±1.07b | - | 1.90±0.07b | + | - | - |
| HB-10 | - | + | - | - | + | + |
| HB-11 | - | + | - | - | + | + |
| HB-12 | - | + | 1.64±0.01d | - | + | - |
| HB-13 | - | - | - | - | + | - |
Tab. 5
Effects of HB-4 and HB-9 on physiological indices of wheat"
| 指标 | 对照组CK | HB-4处理组 | HB-9处理组 |
|---|---|---|---|
| 鲜重/g | 0.16±0.00c | 0.36±0.01b | 0.43±0.01a |
| 干重/g | 0.04±0.00b | 0.07±0.01a | 0.05±0.00b |
| 茎长/cm | 22.83±4.01b | 29.50±1.73a | 28.50±0.50ab |
| 根长/cm | 10.67±1.53b | 13.83±1.89ab | 15.50±1.32a |
| 叶绿素含量/(mg·g-1) | 1.09±0.09b | 1.48±0.13a | 1.42±0.20ab |
| 丙二醛含量/(μmol·L-1) | 10.33±0.16a | 7.61±0.45b | 6.86±1.84b |
| CAT活性/(U·mg-1) | 2.52±0.05c | 4.99±0.07a | 3.58±0.19b |
| POD活性/(U·mg-1) | 73.75±3.61b | 92.40±4.66ab | 101.64±19.78a |
| 脯氨酸含量/(μg·g-1) | 16.00±0.79b | 20.80±1.95a | 13.84±1.98b |
Tab. 6
Effects of inoculated strains on wheat physiological indices under salt stress"
| 指标 | 盐胁迫组 | 对照组 | HB-6处理组 | HB-10处理组 | HB-11处理组 |
|---|---|---|---|---|---|
| 鲜重/g | 0.18±0.03c | 0.23±0.01b | 0.33±0.02a | 0.29±0.01a | 0.21±0.01bc |
| 干重/g | 0.04±0.01c | 0.08±0.01ab | 0.08±0.00ab | 0.08±0.00a | 0.06±0.01b |
| 茎长/cm | 26.17±1.89a | 28.73±1.08a | 30.00±0.50a | 29.00±2.29a | 29.23±2.36a |
| 根长/cm | 10.97±1.38c | 20.63±0.51a | 19.17±1.61a | 19.80±0.30a | 14.17±0.76b |
| 叶绿素含量/(mg·g-1) | 0.94±0.03c | 1.34±0.02a | 1.14±0.05b | 1.33±0.09a | 1.11±0.07b |
| 丙二醛含量/(μmol·L-1) | 7.79±0.48ab | 6.27±0.62c | 9.10±0.68a | 6.98±0.46bc | 7.37±0.64bc |
| CAT活性/(U·mg-1) | 1.67±0.03b | 2.77±0.44a | 2.13±0.17ab | 2.35±0.41ab | 2.54±0.25a |
| POD活性/(U·mg-1) | 52.57±5.90c | 59.76±3.22bc | 72.08±6.00ab | 77.51±2.74a | 73.66±9.38ab |
| 脯氨酸含量/(μg·g-1) | 9.68±0.46c | 16.26±0.12a | 13.88±1.25b | 14.60±0.53b | 13.38±0.29b |
Tab. 7
Effects of inoculated strains on wheat physiological indices under alkaline stress"
| 指标 | 碱胁迫组 | 对照组CK | HB-6处理组 | HB-10处理组 | HB-11处理组 |
|---|---|---|---|---|---|
| 鲜重/g | 0.16±0.01c | 0.26±0.02b | 0.26±0.01b | 0.25±0.02b | 0.32±0.02a |
| 干重/g | 0.05±0.00b | 0.06±0.01ab | 0.06±0.00ab | 0.05±0.00ab | 0.07±0.01a |
| 茎长/cm | 25.33±0.25a | 26.67±1.89a | 28.53±0.25a | 24.90±3.42a | 30.20±2.96a |
| 根长/cm | 20.50±1.00a | 18.43±2.15a | 18.27±2.87a | 22.10±0.87a | 20.80±1.49a |
| 叶绿素含量/(mg·g-1) | 1.78±0.14b | 1.95±0.05ab | 1.94±0.11ab | 2.09±0.05a | 1.96±0.05ab |
| 丙二醛含量/(μmol·L-1) | 7.48±0.52a | 6.12±0.82ab | 7.40±0.71a | 4.94±0.23b | 5.25±0.58b |
| CAT活性/(U·mg-1) | 1.13±0.25b | 2.04±0.27a | 2.09±0.34a | 1.54±0.13ab | 1.96±0.21a |
| POD活性/(U·mg-1) | 68.15±8.59b | 56.05±1.81b | 95.56±1.15a | 96.41±3.97a | 67.41±8.04b |
| 脯氨酸含量/(μg·g-1) | 24.67±1.50a | 16.26±0.12c | 20.18±0.66b | 25.23±0.02a | 24.92±0.72a |
| [1] | Chitnis V R, Suryanarayanan T S, Nataraja K N, et al. Fungal endophyte-mediated crop improvement: The way ahead[J]. Frontiers in Plant Science, 2020, 11: 561007. |
| [2] | Ali J, Mukarram M, Ojo J, et al. Harnessing phytohormones: Advancing plant growth and defence strategies for sustainable agriculture[J]. Physiologia Plantarum, 2024, 176(3): e14307. |
| [3] | War A F, Bashir I, Reshi Z A, et al. Insights into the seed microbiome and its ecological significance in plant life[J]. Microbiological Research, 2023, 269: 127318. |
| [4] | Li D, Chen W, Luo W, et al. Seed microbiomes promote Astragalus mongholicus seed germination through pathogen suppression and cellulose degradation[J]. Microbiome, 2025, 13(1): 23. |
| [5] | Liu Y, Zhao K, Stirling E, et al. Heterosis of endophytic microbiomes in hybrid rice varieties improves seed germination[J]. Msystems, 2024, 9(5): e0000424. |
| [6] | Dai Y, Li X, Wang Y, et al. The differences and overlaps in the seed-resident microbiome of four Leguminous and three Gramineous forages[J]. Microbial Biotechnology, 2020, 13(5): 1461-1476. |
| [7] | Yan K, Pei Z, Meng L, et al. Determination of community structure and diversity of seed-vectored endophytic fungi in Alpinia zerumbet[J]. Frontiers in Microbiology, 2022, 13: 814864. |
| [8] | Chiaranunt P, White J F. Plant beneficial bacteria and their potential applications in vertical farming systems[J]. Plants (Basel, Switzerland), 2023, 12(2): 400. |
| [9] | Rabbee M F, Ali M S, Islam M N, et al. Endophyte mediated biocontrol mechanisms of phytopathogens in agriculture[J]. Research in Microbiology, 2024, 175(8): 104229. |
| [10] | Tripathi A, Pandey P, Tripathi S N, et al. Perspectives and potential applications of endophytic microorganisms in cultivation of medicinal and aromatic Plants[J]. Frontiers in Plant Science, 2022, 13: 985429. |
| [11] | Hernández I, Taulé C, Pérez-Pérez R, et al. Endophytic seed-associated bacteria as plant growth promoters of Cuban Rice (Oryza sativa L.)[J]. Microorganisms, 2023, 11(9): 2317. |
| [12] |
Hosseyni Moghaddam M S, Safaie N, Soltani J, et al. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops[J]. Plant Physiology and Biochemistry, 2021, 160: 225-238.
doi: 10.1016/j.plaphy.2021.01.022 pmid: 33517220 |
| [13] | Woo S L, Hermosa R, Lorito M, et al. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture[J]. Nature Reviews Microbiology, 2023, 21(5): 312-326. |
| [14] | Mushtaq S, Shafiq M, Tariq M R, et al. Interaction between bacterial endophytes and host plants[J]. Frontiers in Plant Science, 2022, 13: 1092105. |
| [15] |
牟红霞, 刘秉儒, 李子豪, 等. 矿井水对荒漠草原土壤微生物群落结构及多样性的影响[J]. 干旱区研究, 2022, 39(5): 1618-1630.
doi: 10.13866/j.azr.2022.05.26 |
|
[Mou Hongxia, Liu Bingru, Li Zihao, et al. Effects of mine water on soil microbial community structure and diversity in desert steppe[J]. Arid Zone Research, 2022, 39(5): 1618-1630.]
doi: 10.13866/j.azr.2022.05.26 |
|
| [16] | Qadir M, Iqbal A, Hussain A, et al. Exploring plant-bacterial symbiosis for eco-friendly agriculture and enhanced resilience[J]. International Journal of Molecular Sciences, 2024, 25(22): 12198. |
| [17] | Morales-Cedeño L R, Orozco-Mosqueda M D C, Loeza-Lara P D, et al. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives[J]. Microbiological Research, 2021, 242: 126612. |
| [18] | Liu P, Li E, Ma Y, et al. Allelopathic potential of Haloxylon ammodendron against Syntrichia caninervis and comparative analysis of soil microbial differences between inside and outside of the bare patches under its canopies[J]. Applied Soil Ecology, 2024, 194: 105205. |
| [19] | Yang F, Lv G. Metabolomic analysis of the response of Haloxylon ammodendron and Haloxylon persicum to drought[J]. International Journal of Molecular Sciences, 2023, 24(10): 9099. |
| [20] |
伊帕热·帕尔哈提, 祖力胡玛尔·肉孜, 田永芝, 等. 荒漠植物内生菌多样性及其增强农作物抗旱和耐盐性的研究进展[J]. 生物技术通报, 2022, 38(12): 88-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1525 |
|
[Yipare Paerhati, ZulihumaerRouzi, Tian Yongzhi, et al. Research progress in diversity of endophytes microbial communities isolated from desert plants and their strengthening effects on drought and salt tolerance in crops[J]. Biotechnology Bulletin, 2022, 38(12): 88-99.]
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1525 |
|
| [21] | Figueredo E F, Cruz T A da, Almeida J R de, et al. The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system[J]. Microbiological Research, 2023, 266: 127218. |
| [22] | Zhang C, Cai K, Li M, et al. Plant-growth-promoting potential of PGPE isolated from Dactylis glomerata L.[J]. Microorganisms, 2022, 10(4): 731. |
| [23] | Lv N, Tao C, Ou Y, et al. Root-associated antagonistic Pseudomonas spp. contribute to soil suppressiveness against banana Fusarium wilt disease of banana[J]. Microbiology Spectrum, 2023, 11(2): e0352522. |
| [24] | SarvePalli M, Velidandi A, KorraPati N. Optimization of siderophore production in three marine bacterial isolates along with their heavy-metal chelation and seed germination potential determination[J]. Microorganisms, 2023, 11(12): 2873. |
| [25] | Wang Z, Li N, Xu Y, et al. Functional activity of endophytic bacteria G9H01 with high salt tolerance and anti-Magnaporthe oryzae that isolated from saline-alkali-tolerant rice[J]. The Science of the Total Environment, 2024, 926: 171822. |
| [26] | 张颖. 耐盐碱促生微生物的筛选、鉴定与应用初探[D]. 呼和浩特: 内蒙古农业大学, 2024. |
| [Zhang Ying. Screening, Identification and Application of Salt Alkali Tolerant and Promoting Microorganisms[D]. Hohhot: Inner Mongolia Agricultural University, 2024.] | |
| [27] | Yadav J, Srivastva A K, Singh R. Diversity of halotolerant endophytes from wheat (Triticum aestivum) and their response to mitigate salt stress in plants[J]. Biocatalysis and Agricultural Biotechnology, 2024, 56: 103000. |
| [28] |
Masmoudi F, Tounsi S, Dunlap C A, et al. Endophytic halotolerant Bacillus velezensis FMH2 alleviates salt stress on tomato plants by improving plant growth and altering physiological and antioxidant responses[J]. Plant Physiology and Biochemistry, 2021, 165: 217-227.
doi: 10.1016/j.plaphy.2021.05.025 pmid: 34058513 |
| [29] | Nguyen H T T, Das Bhowmik S, Long H, et al. Rapid accumulation of proline enhances salinity tolerance in australian wild rice Oryza australiensis domin[J]. Plants (Basel, Switzerland), 2021, 10(10): 2044. |
| [30] | 张青青, 董醇波, 邵秋雨, 等. 杜仲种子内生微生物群落组成及生态功能分析[J]. 林业科学研究, 2023, 36(2): 50-60. |
| [Zhang Qingqing, Dong Chunbo, Shao Qiuyu, et al. Community composition and ecological functional analysis of the endophytic microorganisms in Eucommia ulmoides seeds[J]. Forest Research, 2023, 36(2): 50-60.] | |
| [31] | Guo J, Ling N, Li Y, et al. Seed-borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes[J]. New Phytologist, 2021, 230(5): 2047-2060. |
| [32] | Zhu X X, Shi L N, Shi H M, et al. Characterization of the Priestia megaterium ZS-3 siderophore and studies on its growth-promoting effects[J]. BMC Microbiology, 2025, 25(1): 133. |
| [33] | Chebotar V K, Zaplatkin A N, Chizhevskaya E P, et al. Phytohormone production by the endophyte Bacillus safensis TS3 increases plant yield and alleviates salt stress[J]. Plants (Basel, Switzerland), 2023, 13(1): 75. |
| [34] | Santoyo G, Guzmán-Guzmán P, Parra-Cota F I, et al. Plant growth stimulation by microbial consortia[J]. Agronomy, 2021, 11(2): 219. |
| [35] | Wang Z, Li Y, Zhuang L, et al. A rhizosphere-derived consortium of Bacillus subtilis and Trichoderma harzianum suppresses common scab of potato and increases yield[J]. Computational and Structural Biotechnology Journal, 2019, 17: 645-653. |
| [1] | CHENG Yanlin, WANG Jiayuan, GAO Guanglei, DING Guodong, ZHANG Ying, ZHAO Peishan, ZHU Binbin. Structure and functional group characteristics of generalized and specialized species of soil and root-associated fungi in Pinus sylvestris var. mongolica forests of the Hulunbuir Desert [J]. Arid Zone Research, 2025, 42(6): 1055-1066. |
| [2] | ZHANG Jing, HE Shuang, ZHANG Aiqin. Floral morph variation and genetic effect of five Limonium aureum populations based on Simple Sequence Repeat molecular markers [J]. Arid Zone Research, 2025, 42(3): 499-510. |
| [3] | ZHAO Xuemei, MA Weiwei, ZHANG Shihu, CHANG Wenhua, LI Guang, ZHAO Weijun, ZHANG Yu. Relationship between plant diversity and soil factors in public welfare forests in Minqin County [J]. Arid Zone Research, 2025, 42(1): 108-117. |
| [4] | GAO Haiyan, ZHANG Shengnan, YANG Zhiguo, ZHANG Lei, HUANG Haiguang, YAN Deren. Structure and function of soil fungal community in Pinus tabuliformis sand-fixing forests in Horqin Sandy Land [J]. Arid Zone Research, 2025, 42(1): 118-126. |
| [5] | SU Yuqi, MA Suliya, LI Yufan, WEI Qiuyu, WANG Hongfeng, LI Wenjun. Species diversity and distribution patterns of threatened vascular plants in Kyrgyzstan [J]. Arid Zone Research, 2024, 41(8): 1405-1412. |
| [6] | CUI Guolong, LI Qiangfeng, GAO Ying, LIU Weijun, ZHANG Mei. Characteristics of soil microbial communities structure and influencing factors in typical vegetation in the Beichuan River Source Area of Datong, Qinghai [J]. Arid Zone Research, 2024, 41(7): 1195-1206. |
| [7] | SONG Dacheng, MA Quanlin, LIU Shiquan, WEI Linyuan, WU Hao, DUAN Xiaofeng, GUO Shujiang. Species diversity in Minqin clay sand barrier-artificial Haloxylon ammodendron plantations and the characteristics of soil moisture changes [J]. Arid Zone Research, 2024, 41(4): 618-628. |
| [8] | DUO Hairui, Aoyunbater , WU Jian, LUO Hongwei, TONG Dexing, KONG Fanyan, YANG Fang, WEI Tingting. Bird diversity at the Keluke Lake-Tuosu Lake Nature Reserve in Qaidam Basin [J]. Arid Zone Research, 2024, 41(3): 521-526. |
| [9] | WU Mingjiang, QIU Juan, ZHENG Feng, LING Xiaobo, WANG Xinyu, YANG Yang, YANG Jiaxin, LIU Liqiang. Study on shrub species diversity and niche of wild fruit forest in Xinjiang [J]. Arid Zone Research, 2024, 41(12): 2094-2109. |
| [10] | LI Xiaofeng, HUI Tingting, LI Yaoming, MAO Jiefei, WANG Guangyu, FAN Lianlian. Effects of different grazing management strategies on plant diversity in the mountain grassland of Xinjiang, China [J]. Arid Zone Research, 2024, 41(1): 124-134. |
| [11] | WANG Lide, SONG Dacheng, LI Guangyu, ZHAO Heran, ZHENG Kewen. Syndynamic and diversity of species during gangue treatment in Shuanglong ditch [J]. Arid Zone Research, 2023, 40(8): 1294-1303. |
| [12] | LI Juan, LIU Yang, LIU Guangxiu, CHENG Liang, GUO Qingyun, ZHANG Wei, ZHANG Gaosen. Study on bacterial community structure and influencing factors in the northern margin of the Shanshan Kumtag Desert [J]. Arid Zone Research, 2023, 40(8): 1358-1368. |
| [13] | WANG Siqi, ZHANG Jianjun, ZHANG Yanqin, ZHAO Jiongchang, HU Yawei, LI Yang, TANG Peng, WEI Zhaoyang. Understory plant community diversity of Robinia pseudoacacia plantation with different densities in the loess plateau of western Shanxi Province [J]. Arid Zone Research, 2023, 40(7): 1141-1151. |
| [14] | QIAO Jingjuan, ZUO Xiao’an, YUE Ping, WANG Guolin, WANG Jingyuan, WANG Zezhou. Nutrient addition and disturbance effects on the community composition and assembly in a desert steppe [J]. Arid Zone Research, 2023, 40(6): 958-970. |
| [15] | TA Fuyuan, ZHANG Hongyang, GOU Wenshan, MA Weixin, HU Guixin. Survey of species diversity of darkling beetles in the Minqin temperate desert steppe [J]. Arid Zone Research, 2023, 40(5): 840-848. |
|
||