Arid Zone Research ›› 2025, Vol. 42 ›› Issue (3): 499-510.doi: 10.13866/j.azr.2025.03.10
• Plant Ecology • Previous Articles Next Articles
ZHANG Jing(), HE Shuang, ZHANG Aiqin(
)
Received:
2024-01-09
Revised:
2024-06-09
Online:
2025-03-15
Published:
2025-03-17
Contact:
ZHANG Aiqin
E-mail:2276834219@qq.com;zhangaq@xju.edu.com
ZHANG Jing, HE Shuang, ZHANG Aiqin. Floral morph variation and genetic effect of five Limonium aureum populations based on Simple Sequence Repeat molecular markers[J].Arid Zone Research, 2025, 42(3): 499-510.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
12 pairs of SSR primers’ information with polymorphism"
引物名称 | 上游引物序列(5′→3′) | 下游引物序列(5′→3′) | 等位基因大小/bp | 退火温度/℃ |
---|---|---|---|---|
LB6 | AGAATCTGAGTGGCTGTT | GGCTTAGGGTTTGTGA | 285~290 | 52 |
LB12 | CAACTGTGAAAGACGGAAAG | CACGGCAATGGAGGAT | 212~285 | 58 |
LB26 | AGAGGGTGCCTGGAAA | AGGGTTGATGGCTTGG | 134~140 | 53 |
LB30 | GTGATAATGCCTGGAGA | GAGGATGTTGGTTTCG | 154~180 | 53 |
LB64 | CAACTGTGAAAGACGGAAAG | CACGGCAATGGAGGAT | 212~284 | 58 |
Ld081 | AACCGACGATCCTCTCTTCTC | AGGATTCGCCGGTCTTGT | 144~150 | 65 |
Ld445 | TCTCTCTCAAGCACCAGCAG | CAGACCGAAGTCAATGAGCA | 196~231 | 60 |
Ln39 | TGAGCCAATTAGGGCCGCTACCGAG | TCAAGACCCAATGGCTCTGCAGCAACAAAA | 151 | 65 |
Ln149 | GAGTGGAAATTAACCGACGGA | CTCCATCCCATCATTATTGTACTCATTGTG | 90 | 55 |
Ln141 | AATTCGATTGCTGCCGAACTG | AATTCATGGACAAGAAGAAGAAGAAGAAGA | 189 | 65 |
Ln146 | CCCGTTCTTCTCTTCCTCCCTTTG | CCATGGATAGATCCCCGCAATTAGCC | 196 | 62 |
Ln152 | CAGCACTTTCTATACTAAAACATCGTCGCC | AATTCGCTGGTGAGCCAACCCTATT | 370 | 65 |
Tab. 2
Genetic informations of 11 pairs of SSR primers"
引物名称 | Na | Ne | I | Ho | He | F | Fis | Fst | Nm | PIC |
---|---|---|---|---|---|---|---|---|---|---|
LB12 | 5.600 | 2.379 | 1.168 | 0.406 | 0.573 | 0.307 | 0.291 | 0.164 | 1.272 | 0.634 |
LB26 | 2.200 | 1.234 | 0.333 | 0.125 | 0.184 | 0.194 | 0.318 | 0.489 | 0.262 | 0.270 |
LB30 | 2.400 | 1.674 | 0.593 | 0.217 | 0.363 | 0.437 | 0.403 | 0.445 | 0.312 | 0.560 |
LB6 | 3.600 | 1.791 | 0.719 | 0.274 | 0.377 | 0.308 | 0.275 | 0.083 | 2.771 | 0.394 |
LB64 | 3.600 | 1.816 | 0.737 | 0.330 | 0.408 | 0.158 | 0.190 | 0.281 | 0.640 | 0.470 |
Ld081 | 2.800 | 2.314 | 0.827 | 0.533 | 0.472 | -0.106 | -0.129 | 0.375 | 0.417 | 0.713 |
Ld445 | 2.800 | 2.322 | 0.880 | 0.417 | 0.536 | 0.229 | 0.223 | 0.318 | 0.536 | 0.748 |
Ln141 | 3.000 | 2.392 | 0.919 | 0.672 | 0.554 | -0.209 | -0.213 | 0.162 | 1.296 | 0.590 |
Ln146 | 2.200 | 1.683 | 0.610 | 0.257 | 0.392 | 0.411 | 0.345 | 0.249 | 0.755 | 0.400 |
Ln152 | 1.800 | 1.318 | 0.257 | 0.129 | 0.145 | 0.251 | 0.113 | 0.602 | 0.166 | 0.300 |
Ln39 | 2.400 | 1.673 | 0.379 | 0.187 | 0.188 | -0.020 | 0.005 | 0.344 | 0.477 | 0.255 |
Mean | 2.945 | 1.872 | 0.675 | 0.322 | 0.381 | 0.178 | 0.166 | 0.319 | 0.809 | 0.485 |
Tab. 3
Genetic informations of L. aureum populations"
居群 | Na | Ne | I | Ho | He | F |
---|---|---|---|---|---|---|
ATS | 2.636 | 1.833 | 0.619 | 0.290 | 0.360 | 0.293 |
MF | 2.273 | 1.581 | 0.514 | 0.232 | 0.304 | 0.203 |
NE | 3.182 | 2.154 | 0.775 | 0.410 | 0.439 | 0.050 |
WLKSY | 3.636 | 2.105 | 0.834 | 0.410 | 0.455 | 0.137 |
YT | 3.000 | 1.688 | 0.630 | 0.269 | 0.346 | 0.211 |
Mean | 2.945 | 1.872 | 0.675 | 0.322 | 0.381 | 0.178 |
[1] | 张冬梅, 张华新, 沈熙环, 等. 油松种子园交配系统的时空变化研究[J]. 林业科学, 2004, 40(1): 70-77. |
[Zhang Dongmei, Zhang Huaxin, Shen Xihuan, et al. Study on temporal and spatial change of the mating system in a seed orchard of Pinus tabulaeformis[J]. Scientia Silvae Sinicae, 2004, 40(1): 70-77.] | |
[2] | Charlesworth D, Wright S I. Breeding systems and genome evolution[J]. Current Opinion in Genetics and Development, 2001, 11(6): 685-690. |
[3] | Hamrick J L. Lsozymes and the Analysis of Genetic Structure in Plant Populations[M]. Dordrecht: Springer Netherlands, 1989: 73-86. |
[4] | Charlesworth D, Charlesworth B. Inbreeding depression and its evolutionary consequences[J]. Annual Review of Ecology and Systematics, 1987, 18(1): 237-268. |
[5] |
Fant J B, Havens K, Keller J M, et al. The influence of contemporary and historic landscape features on the genetic structure of the sand dune endemic, Cirsium pitcher (Asteraceae)[J]. Heredity, 2014, 112(5): 519-530.
doi: 10.1038/hdy.2013.134 pmid: 24398882 |
[6] | Young A, Boyle T, Brown T. The population genetic consequences of habitat fragmentation for plants[J]. Trends in Ecology and Evolution, 1996, 11(10): 413-418. |
[7] | Leimu R, Mutikainen P, Fischer K M. How general are positive relationships between plant population size, fitness and genetic variation[J]. Journal of Ecology, 2006, 94(5): 942-952. |
[8] | Brauner S, Crawford D J, Stuessy T F. Ribosomal DNA and RAPD variation in the rare plant family Lactoridaceae[J]. American Journal of Botany, 1992, 79(12): 1436-1439. |
[9] | Darwin C. The Different Forms of Flowers on Plants of the Same Species[M]. London: Murray John, 1877: 244-277. |
[10] | Ganders F R. The biology of heterostyly[J]. New Zealand Journal of Botany, 1979, 17(4): 607-635. |
[11] | Fisher R A. On the selective consequences of East’s (1927) theory of heterostylism in Lythrum[J]. Journal of Genetics, 1935, 30(3): 369-382. |
[12] | Perez-Barrales R, Arroyo J. Pollinator shifts and the loss of style polymorphism in Narcissus papyraceus (Amaryllidaceae)[J]. Journal of Evolutionary Biology, 2010, 23(6): 1117-1128. |
[13] |
Yuan S, Barrett S C H, Duan T T, et al. Ecological correlates and genetic consequences of evolutionary transitions from distyly to homostyly[J]. Annals of Botany, 2017, 120(5): 775-789.
doi: 10.1093/aob/mcx098 pmid: 28961784 |
[14] | Eckert C G, Barrett S C H. Style morph ratios in tristylous Decodon verticillatus (Lythraceae): Selection vs. historical contingency[J]. Ecology, 1995, 76(4): 1051-1066. |
[15] | Husband B C, Barrett S C H. Genetic drift and the maintenance of the style length polymorphism in tristylous populations of Eichhornia paniculate (Pontederiaceae)[J]. Heredity, 1992, 69(5): 440-449. |
[16] | Charlesworth D. Primrose homostyles: A classic case of possible balancing selection revisited[J]. Molecular Ecology, 2023, 32(1): 30-32. |
[17] |
Busch J W, Delph L. The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization[J]. Annals of Botany, 2012, 109(3): 553-562.
doi: 10.1093/aob/mcr219 pmid: 21937484 |
[18] | Matias R, Perez-Barrales R, Consolaro H. Patterns of variation in distylous traits and reproductive consequences in Erythroxylum species and populations[J]. American Journal of Botany, 2020, 107(6): 910-922. |
[19] | Barrett S C H. ‘A most complex marriage arrangement’: Recent advances on heterostyly and unresolved questions[J]. New Phytologist, 2019, 224(3): 1051-1067. |
[20] | Yuan S, Zeng G, Zhang K, et al. Diverse mating consequences of the evolutionary breakdown of the sexual polymorphism heterostyly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(2): e2214492120. |
[21] | Hoshino Y, Hoshino M, Yoshioka K, et al. The effects of inbreeding depression and pollinator visitation on the maintenance of herkogamy in Oxalis corniculata, a species derived from a heterostylous ancestor[J]. Plant Species Biology, 2022, 37(6): 349-360. |
[22] |
Zhong L, Barrett S C H, Wang X J, et al. Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants[J]. New Phytologist, 2019, 224(3): 1290-1303.
doi: 10.1111/nph.15905 pmid: 31077611 |
[23] |
Zhou W, Barrett S C H, Li H D, et al. Phylogeographic insights on the evolutionary breakdown of heterostyly[J]. New Phytologist, 2017, 214(3): 1368-1380.
doi: 10.1111/nph.14453 pmid: 28176339 |
[24] | Zhang W, Hu Y F, He X, et al. Evolution of autonomous selfing in marginal habitats: Spatiotemporal variation in the floral traits of the distylous Primula wannanensis[J]. Frontiers in Plant Science, 2021, 12: 781281. |
[25] | Wu L Y, Wang B, Schoen D J, et al. Transitions from distyly to homostyly are associated with floral evolution in the buckwheat genus (Fagopyrum)[J]. American Journal of Botany, 2017, 104(8): 1232-1240. |
[26] |
Belaoussoff S, Shore J S. Floral correlates and fitness consequences of mating-system variation in Turnera ulmifolia[J]. Evolution, 1995, 49(3): 545-556.
doi: 10.1111/j.1558-5646.1995.tb02286.x pmid: 28565088 |
[27] |
Costa J, Torices R, Barrett S C H. Evolutionary history of the buildup and breakdown of the heterostylous syndrome in Plumbaginaceae[J]. New Phytologist, 2019, 224(3): 1278-1289.
doi: 10.1111/nph.15768 pmid: 30825331 |
[28] |
Jiménez A, Weigelt B, Santos-Guerra A, et al. Surviving in isolation: Genetic variation, bottlenecks and reproductive strategies in the Canarian endemic Limonium macrophyllum (Plumbaginaceae)[J]. Genetica, 2017, 145(1): 91-104.
doi: 10.1007/s10709-017-9948-z pmid: 28108874 |
[29] | Palop M, Palacios C, González-Candelas F. Development and across-species transferability of microsatellite markers in the genus Limonium (Plumbaginaceae)[J]. Conservation Genetics, 2000, 1(2): 177-179. |
[30] | Palop-Esteban M, González-Candelas F. Development of microsatellite markers for the critically endangered Limonium dufourii (Girard) Kuntze (Plumbaginaceae)[J]. Molecular Ecology Resources, 2002, 2(4): 521-523. |
[31] |
Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3): 314-331.
pmid: 6247908 |
[32] | Koutroumpa K, Theodoridis S, Warren B H, et al. An expanded molecular phylogeny of Plumbaginaceae, with emphasis on Limonium (sea lavenders): Taxonomic implications and biogeographic considerations[J]. Ecology and Evolution, 2018, 8(24): 12397-12424. |
[33] | Koutroumpa K, Warren B H, Theodoridis S, et al. Geo-climatic changes and apomixis as major drivers of diversification in the mediterranean sea lavenders (Limonium Mill)[J]. Frontiers in Plant Science, 2021, 11: 612258. |
[34] | Baker H G. Dimorphism and monomorphism in the Plumbaginaceae: III. Correlation of geographical distribution patterns with dimorphism and monomorphism in Limonium[J]. Annals of Botany, 1953, 17(4): 615-628. |
[35] | Baker H G. Dimorphism and monomorphism in the Plumbaginaceae: I. Survey of the family[J]. Annals of Botany, 1948, 12(3): 207-219. |
[36] |
Baker H G. The evolution, functioning and breakdown of heteromorphic incompatibility systems. I. The Plumbaginaceae[J]. Evolution, 1966, 20(3): 349-368.
doi: 10.1111/j.1558-5646.1966.tb03371.x pmid: 28562969 |
[37] | 杨婉舒, 熊昕, 席党鹏, 等. 乌恰县贝壳山: 塔里木盆地西部沧海桑田的见证者[J]. 自然杂志, 2023, 45(2): 148-154. |
[Yang Wanshu, Xiong Xin, Xi Dangpeng, et al. The transition from sea to land of the western Tarim Basin: Evidence from Shell Mountain of Wuqia County[J]. Chinese Journal of Nature, 2023, 45(2): 148-154.]
doi: 10.3969/j.issn.0253-9608.2023.02.010 |
|
[38] | 潘晓玲. 塔里木盆地植物区系的研究[J]. 新疆大学学报(自然科学版), 1994, 11(4): 77-83. |
[Pan Xiaoling. The study on Tarim Basin Flora[J]. Journal of Xinjiang University (Natural Science), 1994, 11(4): 77-83.] | |
[39] | 欧文雅. 内蒙古境内六种补血草属(Limonium)植物的进化与起源关系初探[D]. 呼和浩特: 内蒙古大学, 2009. |
[Ou Wenya. Preliminary Studies on Evolution and origin of Halophyte Based on Six Species of Limonium in Inner Mongolia[D]. Hohhot: Inner Mongolia University, 2009.] | |
[40] | Charlesworth B, Charlesworth D. The maintenance and breakdown of distyly[J]. American Naturalist, 1979, 114(4): 499-513. |
[41] | Huu C N, Plaschil S, Himmelbach A, et al. Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid-inactivating cytochrome P450 CYP734A50[J]. Current Biology, 2022, 32(3): 671-676. |
[42] | 阿依古丽·阿卜杜热伊木, 焦芳芳, 张爱勤. 异型花柱植物喀什补血草的传粉者功能群与花粉转移效率[J]. 植物生态学报, 2021, 45(1): 51-61. |
[Ayiguli·Abudureyimu, Jiao Fangfang, Zhang Aiqin. Pollinator functional groups and their pollen transfer efficiency in heterostylous Limonium kaschgaricum (Plumbaginaceae)[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 51-61.] | |
[43] |
任登芙, 翟雅芯, 张爱勤. 新疆5个驼舌草二型花柱居群交互式雌雄异位的变异[J]. 植物学报, 2023, 58(5): 733-742.
doi: 10.11983/CBB22225 |
[Ren Dengfu, Zhai Yaxin, Zhang Aiqin. The variation of reciprocal herkogamy in five distylous populations of Goniolimon speciosum in Xinjiang[J]. Chinese Bulletin of Botany, 2023, 58(5): 733-742.] | |
[44] |
Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants[J]. Molecular Ecology, 2004, 13(5): 1143-1155.
doi: 10.1111/j.1365-294X.2004.02141.x pmid: 15078452 |
[45] |
Orsini L, Vanoverbeke J, Swillen I, et al. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization[J]. Molecular Ecology, 2013, 22(24): 5983-5999.
doi: 10.1111/mec.12561 pmid: 24128305 |
[46] |
刘硕, Decroocq Veronique, 张玉军, 等. 普通杏和西伯利亚杏野生居群遗传多样性与其地理分布关系研究[J]. 植物遗传资源学报, 2020, 21(6): 1527-1538.
doi: 10.13430/j.cnki.jpgr.20200417001 |
[Liu Shuo, Decroocq Veronique, Zhang Yujun, et al. Study on the relationship between genetic diversity and geographical distribution of Wild Common Apricots and Siberian Apricots[J]. Journal of Plant Genetic Resources, 2020, 21(6): 1527-1538.] | |
[47] |
Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations[J]. Evolution, 1993, 47(1): 264-279.
doi: 10.1111/j.1558-5646.1993.tb01215.x pmid: 28568097 |
[48] | Zhang J X, Wang M L, Guo Z P, et al. Genetic diversity and population structure of bermudagrass [Cynodon dactylon(L. ) Pers. ] along latitudinal gradients and the relationship with polyploidy level[J]. Diversity, 2019, 11(8): 3-15. |
[1] | LIU Gang, HU De-Fu, ZHAO Sha-Sha. Progress in Studies on Genetic Diversity of Equus przewalskii [J]. , 2011, 28(6): 1051-1056. |
[2] | ZHANG Dao-yuan, LIU Hui-liang, WANG Jian-cheng, SHI Xiang, LIU Yan. Conservation Biological Study on Eremosparton songoricum [J]. , 2011, 28(1): 104-110. |
|