Arid Zone Research ›› 2025, Vol. 42 ›› Issue (5): 800-809.doi: 10.13866/j.azr.2025.05.03
• Land and Water Resources • Previous Articles Next Articles
JI Yaxin1,2(
), LI Lu1,2, YANG Xuedong1,2, HOU Fulai1,2, ZHANG Meng1,2, DONG Shaogang1,2(
)
Received:2024-11-22
Revised:2025-02-05
Online:2025-05-15
Published:2025-10-22
Contact:
DONG Shaogang
E-mail:jiyaxin0217@163.com;groundwater@163.com
JI Yaxin, LI Lu, YANG Xuedong, HOU Fulai, ZHANG Meng, DONG Shaogang. Chemical characteristics of groundwater and carbon cycle in desert areas: A case study of the eastern region of Ulan Buh Desert[J].Arid Zone Research, 2025, 42(5): 800-809.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Statistical of hydrochemical indices in the study area /(mg·L-1)"
| K+ | Na+ | Ca2+ | Mg2+ | Cl- | SO42- | HCO3- | NO3- | F- | TDS | pH | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 潜水 | 均值 | 12.66 | 131.84 | 57.90 | 47.20 | 135.45 | 199.33 | 242.89 | 43.53 | 0.75 | 764.84 | 8.30 |
| 标准差 | 35.18 | 69.19 | 38.79 | 35.31 | 88.76 | 153.61 | 101.40 | 58.03 | 0.36 | 437.89 | 0.72 | |
| 极小值 | 1.20 | 34.90 | 8.00 | 8.50 | 39.00 | 38.40 | 103.70 | 0.00 | 0.18 | 252.40 | 7.66 | |
| 极大值 | 156.40 | 283.90 | 140.30 | 170.10 | 340.30 | 744.00 | 433.20 | 241.40 | 1.44 | 2299.45 | 10.67 | |
| 变异系数 | 2.78 | 0.52 | 0.67 | 0.75 | 0.66 | 0.77 | 0.42 | 1.33 | 0.49 | 0.57 | 0.09 | |
| 承压水 | 均值 | 3.86 | 144.60 | 48.51 | 41.23 | 162.97 | 177.77 | 227.62 | 12.41 | 0.72 | 716.56 | 8.25 |
| 标准差 | 1.81 | 101.00 | 30.49 | 25.23 | 121.29 | 103.88 | 110.04 | 16.37 | 0.58 | 372.92 | 0.40 | |
| 极小值 | 0.80 | 29.70 | 12.00 | 7.30 | 42.50 | 28.80 | 67.10 | 0.00 | 0.18 | 246.50 | 7.66 | |
| 极大值 | 7.80 | 383.90 | 140.30 | 111.80 | 549.50 | 422.40 | 494.20 | 64.49 | 3.20 | 1562.30 | 9.18 | |
| 变异系数 | 0.47 | 0.70 | 0.63 | 0.61 | 0.74 | 0.58 | 0.48 | 1.32 | 0.80 | 0.52 | 0.05 |
Tab. 3
Quantities of dissolved and precipitated minerals along the simulation pathway /(mol·L-1)"
| 矿物名称及化学式 | 路径 | ||||
|---|---|---|---|---|---|
| 1-5 | 6-7 | 10-11 | 15-14 | 21-23 | |
| 钠长石NaAlSi3O8 | -1.35E-04 | 1.04E-03 | -2.61E-05 | 1.01E-03 | -1.40E-03 |
| 钙长石CaAl2Si2O8 | -5.27E-08 | 1.01E-03 | -1.13E-05 | 1.38E-03 | -1.79E-03 |
| 方解石CaCO3 | 1.63E-03 | -7.52E-04 | -9.63E-04 | 1.78E-03 | 9.82E-04 |
| 二氧化碳CO2 | -2.04E-04 | 1.30E-03 | 1.73E-03 | 7.95E-04 | -1.36E-03 |
| 白云石CaMg(CO3)2 | -8.28E-04 | -2.58E-04 | 7.25E-04 | -1.41E-03 | 1.01E-03 |
| 钾长石KAlSi3O8 | 2.05E-05 | -1.79E-04 | 4.86E-05 | -3.84E-05 | 1.02E-05 |
| 蒙脱石Al2O9Si3 | 4.90E-05 | -1.24E-03 | 1.58E-04 | -1.60E-03 | 2.13E-03 |
| 石膏CaSO4·2H2O | -1.62E-03 | -1.50E-04 | -1.50E-04 | 2.10E-03 | 2.50E-04 |
Tab. 4
Total amount of mineral dissolution-precipitation and CO2 absorption or release on each path"
| 路径 | 水量/(105 m3) | 方解石/(t·a-1) | 白云石/(t·a-1) | CO2/(t·a-1) | 钠长石/(t·a-1) | 钙长石/(t·a-1) | 钾长石/(t·a-1) | 蒙脱石/(t·a-1) | 石膏/(t·a-1) |
|---|---|---|---|---|---|---|---|---|---|
| 1-5 | 61.75 | 1007.10 | -940.50 | -55.370 | -217.75 | -0.09 | 35.12 | 85.38 | -1403.02 |
| 6-7 | 196.20 | -1475.63 | -929.96 | 1119.680 | 5320.39 | 5519.85 | -977.43 | -6838.63 | -412.85 |
| 10-11 | 36.45 | -351.09 | 486.26 | 277.109 | -24.89 | -11.43 | 49.26 | 161.98 | -76.59 |
| 15-14 | 31.50 | 561.38 | -818.47 | 110.128 | 836.93 | 1209.45 | -33.62 | -1424.96 | 926.18 |
| 21-23 | 26.06 | 255.81 | 483.73 | -156.260 | -955.03 | -1298.01 | 7.42 | 1567.98 | 91.27 |
| 合计 | -2.43 | -1718.94 | 1295.290 | 4959.66 | 5419.77 | -919.25 | -6448.26 | -875.00 |
| [1] | 杜新强, 方永军, 郭辉, 等. 面向地下水资源可持续开发利用的地下水适宜埋深研究进展[J]. 中国环境科学, 2024, 44(9): 4987-4998. |
| [Du Xinqiang, Fang Yongjun, Guo Hui, et al. Research progress on suitable groundwater depth towards sustainable development and utilization of groundwater resources[J]. China Environmental Science, 2024, 44(9): 4987-4998.] | |
| [2] |
王思佳, 刘鹄, 赵文智, 等. 干旱-半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
doi: 10.11867/j.issn.1001-8166.2019.02.0210 |
|
[Wang Sijia, Liu Hu, Zhao Wenzhi, et al. Groundwater sustainability in arid and semi-arid environments: A review[J]. Advances in Earth Science, 2019, 34(2): 210-223.]
doi: 10.11867/j.issn.1001-8166.2019.02.0210 |
|
| [3] | Hao A, Zhang Y, Zhang E, et al. Review: Groundwater resources and related environmental issues in China[J]. Hydrogeol Journal, 2018, 26(5): 1325-1337. |
| [4] | 王锟. 土默川平原地下水数值模拟及应用[D]. 呼和浩特: 内蒙古大学, 2023. |
| [Wang Kun. Numerical Simulation and Application of Groundwater in Tumochuan Plain[D]. Hohhot: Inner Mongolia University, 2023.] | |
| [5] | 刘晓波, 董少刚, 刘白薇, 等. 内蒙古土默川平原地下水水文地球化学特征及其成因[J]. 地球学报, 2017, 38(6): 919-929. |
| [Liu Xiaobo, Dong Shaogang, Liu Baiwei, et al. Hydrogeochemical characteristics and genesis of groundwater in the Tumochuan Plain of Inner Mongolia[J]. Acta Geoscientica Sinica, 2017, 38(6): 919-929.] | |
| [6] | 李浩乾, 孟姝蓉, 董生旺, 等. 内蒙古土默特左旗地下水化学特征及成因[J]. 地球与环境, 2024, 52(4): 429-437. |
| [Li Haoqian, Meng Shurong, Dong Shenwang, et al. Origin and chemical characteristics of groundwater in Tumed Left Banner, Inner Mongolia[J]. Earth and Environment, 2024, 52(4): 429-437.] | |
| [7] | 刘海燕, 马玉学, 赵志鹏, 等. 银川平原地下水水化学特征及演变研究[J]. 宁夏工程技术, 2023, 22(4): 377-384. |
| [Liu Haiyan, Ma Yuxue, Zhao Zhipeng, et al. Study on the hydrochemical characteristics and evolution of groundwater in Yinchuan Plain[J]. Ningxia Engineering Technology, 2023, 22(4): 377-384.] | |
| [8] | 吴玺, 安永会, 魏世博, 等. 黑河下游鼎新谷地浅层地下水水化学特征及演化规律[J]. 干旱区资源与环境, 2021, 35(9): 103-109. |
| [Wu Xi, An Yonghui, Wei Shibo, et al. Hydrochemical characteristics and evolution of shallow groundwater in Dingxin Valley, lower reaches of Heihe River[J]. Journal of Arid Land Resources and Environment, 2021, 35(9): 103-109.] | |
| [9] | 张文强. 巴丹吉林沙漠湖泊与地下水主要特征及成因机理分析[D]. 北京: 中国地质大学(北京), 2018. |
| [Zhang Wenqiang. Main Characteristics and Genetic Mechanism of Lakes and Groundwater in Badain Jaran Desert[D]. Beijing: China University of Geosciences (Beijing), 2018.] | |
| [10] | Jin T, Zhao W, Zhou L, et al. Gilgai microtopography enhances groundwater recharge in the Gobi Desert[J]. Water Resources, 2024, 51(3): 221-228. |
| [11] | Wang Z, Wang L J, Shen J M, et al. Groundwater recharge via precipitation in the Badain Jaran Desert, China[J]. Journal of Groundwater Science and Engineering, 2024, 12(1): 109-118. |
| [12] | Dong S G, Liu B W, Ma M Y, et al. Influence mechanism of groundwater on the carbon cycle in alkaline lakes[J]. Journal of Hydrology, 2023, 617: 129104. |
| [13] | 雷君豪. 土默川平原地下水碳平衡[D]. 呼和浩特: 内蒙古大学, 2023. |
| [Lei Junhao. Carbon Balance of Groundwater in Tumochuan Plain[D]. Hohhot: Inner Mongolia University, 2023.] | |
| [14] |
Li Y, Zhang C, Wang N, et al. Substantial inorganic carbon sink in closed drainage basins globally[J]. Nature Geoscience, 2017, 10(7): 501-506.
doi: 10.1038/NGEO2972 |
| [15] | Ma J, Liu R, Tang L S, et al. A downward CO2 flux seems to have nowhere to go[J]. Biogeosciences, 2014, 11(22): 6251-6262. |
| [16] | 李畅, 杨忠芳, 余涛, 等. 干旱区土壤无机碳碳汇作用及其对固碳减排贡献研究进展[J]. 中国地质, 2024, 51(4): 1210-1242. |
| [Li Chang, Yang Zhongfang, Yu Tao, et al. Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review[J]. Geology in China, 2024, 51(4): 1210-1242.] | |
| [17] | Granados V, Gutiérrez-Cánovas C, Arias-Real R, et al. The interruption of longitudinal hydrological connectivity causes delayed responses in dissolved organic matter[J]. Science of the Total Environment, 2020, 713: 136619. |
| [18] |
陈发家, 肖琼, 胡祥云, 等. 典型岩溶小流域碳酸盐岩风化过程及其碳汇效应[J]. 地学前缘, 2024, 31(5): 449-459.
doi: 10.13745/j.esf.sf.2024.2.13 |
|
[Chen Fajia, Xiao Qiong, Hu Xiangyun, et al. Weathering process and carbon sink effect of carbonates in typical karst small basin[J]. Earth Science Frontiers, 2024, 31(5): 449-459.]
doi: 10.13745/j.esf.sf.2024.2.13 |
|
| [19] | 李璐, 燕亚平, 史晓珑, 等. 地下水蒸发排泄区无机碳迁移——以呼和浩特盆地为例[J]. 地球与环境, 2024, 52(5): 567-575. |
| [Li Lu, Yan Yaping, Shi Xiaolong, et al. Migration of inorganic carbon in groundwater evaporation discharge areas: A case study of Hohhot Basin[J]. Earth and Environment, 2024, 52(5): 567-575.] | |
| [20] | Tariq A, Graciano C, Sardans J, et al. Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate[J]. New Phytologist, 2024, 242(3): 916-934. |
| [21] |
Richard S. Have desert researchers discovered a hidden loop in the carbon cycle?[J]. Science, 2008, 320(5882): 1409-1410.
doi: 10.1126/science.320.5882.1409 pmid: 18556524 |
| [22] | Wang W, Chen X, Zheng H, et al. Soil CO2 uptake in deserts and its implications to the groundwater environment[J]. Water, 2016, 8(9): 379. |
| [23] | Jia X, Ling H B, Zhang G P, et al. Variations in the dissolved carbon concentrations of the shallow groundwater in a desert inland river basin[J]. Journal of Hydrology, 2021, 602: 0022-1694. |
| [24] | Dong S G, Liu B W, Lei J H, et al. Carbon balance model of groundwater system: A field application[J]. Journal of Hydrology, 2022, 610(7): 127845. |
| [25] | Li Y, Wang Y, Houghton R A, et al. Hidden carbon sink beneath desert[J]. Geophysical Research Letters, 2015, 42(14): 5880-5887. |
| [26] | 党慧慧. 乌兰布和沙漠地下水水化学特征和水文地球化学过程[D]. 兰州: 兰州大学, 2016. |
| [Dang Huihui. Groundwater Hydrochemical Characters and Hydrogeochemical Processes of Ulan Buh[D]. Lanzhou: Lanzhou University, 2016.] | |
| [27] | 赵杰, 李德文, 孙昌斌, 等. 末次冰期以来乌兰布和沙漠北缘的环境变迁[J]. 第四纪研究, 2017, 37(2): 380-392. |
| [Zhao Jie, Li Dewen, Sun Changbin, et al. Environmental evolution of the northern boundary of the Ulan Buh Desert since the last glacial period[J]. Quaternary Sciences, 2017, 37(2): 380-392.] | |
| [28] | 朱锡芬. 乌兰布和沙漠地下水补给来源及演化规律[D]. 兰州: 兰州大学, 2015. |
| [Zhu Xifen. Study on Recharge and Evolution of Groundwater of Ulan Buh Desert[D]. Lanzhou: Lanzhou University, 2015.] | |
| [29] | 兰梦. 乌兰布和沙漠全新世环境演化研究[D]. 太原: 山西大学, 2024. |
| [Lan Meng. Environment Evolution of Ulan Buh Desert During the Holocene[D]. Taiyuan: Shanxi University, 2024.] | |
| [30] |
党慧慧, 董军, 岳宁, 等. 贺兰山以北乌兰布和沙漠地下水水化学特征演化规律研究[J]. 冰川冻土, 2015, 37(3): 793-802.
doi: 10.7522/j.issn.1000-0240.2015.0088 |
|
[Dang Huihui, Dong Jun, Yue Ning, et al. Study of the evolution of hydrochemical properties of groundwater in Ulan Buh Desert in the north of the Helan Mountains[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 793-802.]
doi: 10.7522/j.issn.1000-0240.2015.0088 |
|
| [31] |
Wouter Z, Mustafa R E. Flow systems of the Earth’s viscous subsurface: A complement to groundwater flow systems[J]. Ain Shams Engineering Journal, 2021, 12(1): 775-778.
doi: 10.1016/j.asej.2020.08.017 |
| [32] | 焦峥瑞. 青海省东部乐都盆地地下水化学演化特征[D]. 石家庄: 河北地质大学, 2019. |
| [Jiao Zhengrui. Research on Evolution of Groundwater Chemical Characteristics of Ledu Basin in the Eastern Qinghai Province[D]. Shijiazhuang: Hebei GEO University, 2019.] | |
| [33] | 王文龙. 乌兰布和沙漠东部地区地下水资源评价[D]. 呼和浩特: 内蒙古大学, 2020. |
| [Wang Wenlong. Evaluation of Groundwater Resources in Ulan Buh and the Eastern Desert Region[D]. Hohhot: Inner Mongolia University, 2020.] | |
| [34] | Higashino M, Erickson A J, Toledo-Cossu F L, et al. Rinsing of saline water from road salt in a sandy soil by infiltrating rainfall: Experiments, simulations, and implications[J]. Water and Soil Pollut, 2017, 228(80): 1573-2932. |
| [35] | 李燕. 乌兰布和沙漠水汽热耦合运移规律及植被生态学意义[D]. 西安: 长安大学, 2013. |
| [Li Yan. The Law of Coupled Water-Vapor-Heat Migration and the Vegetation Ecological Significance of Ulan Buh Desert[D]. Xi’an: Chang’an University, 2013.] | |
| [36] | 肖彩虹, 郝玉光, 辛智鸣, 等. 乌兰布和沙漠东北部人工绿洲地下水位动态变化研究[J]. 防护林科技, 2013(12): 1-3. |
| [Xiao Caihong, Hao Yuguang, Xin Zhiming, et al. Dynamic changes of groundwater level at artificial oasis in northeastern Ulan Buh Desert protection[J]. Forest Science and Technology, 2013(12): 1-3.] | |
| [37] | 叶冬梅, 秦佳琪, 韩胜利, 等. 乌兰布和沙漠流动沙丘不同部位水分动态研究[J]. 干旱区研究, 2005, 22(3): 367-370. |
| [Ye Dongmei, Qin Jiaqi, Han Shengli, et al. Study on the dynamic change of soil moisture content at the different sites of mobile dunes in Ulan buh Desert, Inner Mongolia[J]. Arid Zone Research, 2005, 22(3): 367-370.] | |
| [38] |
岳宁, 魏国孝, 孙朋, 等. 乌兰布和沙漠降水入渗补给对气候变化的响应[J]. 中国沙漠, 2017, 37(5): 1016-1025.
doi: 10.7522/j.issn.1000-694X.2016.00079 |
|
[Yue Ning, Wei Guoxiao, Sun Peng, et al. Rainfall infiltration recharge and its responses to climate change in the Ulan Buh Desert[J]. Journal of Desert Research, 2017, 37(5): 1016-1025.]
doi: 10.7522/j.issn.1000-694X.2016.00079 |
|
||