Arid Zone Research ›› 2024, Vol. 41 ›› Issue (9): 1583-1592.doi: 10.13866/j.azr.2024.09.14
• Ecology and Environment • Previous Articles Next Articles
QI Zhao(), YAN Feng, XI Lei, CAO Xiaoming, ZOU Jiaxiu, FENG Yiming()
Received:
2024-03-26
Revised:
2024-06-25
Online:
2024-09-15
Published:
2024-09-25
Contact:
FENG Yiming
E-mail:qizhao1104@163.com;fengym@caf.ac.cn
QI Zhao, YAN Feng, XI Lei, CAO Xiaoming, ZOU Jiaxiu, FENG Yiming. A study on the potential for vegetation restoration in the soft rock area of the Ordos Plateau[J].Arid Zone Research, 2024, 41(9): 1583-1592.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Vegetation coverage distribution of soft rock area at different gradient and slope"
类型 | 坡向 | ≤2° | 2°~6° | 6°~15° | 15°~25° | >25° |
---|---|---|---|---|---|---|
FVC裸露砒砂岩区 | 阴坡 | 0.34 | 0.32 | 0.40 | 0.50 | - |
半阴坡 | 0.35 | 0.32 | 0.40 | 0.41 | - | |
阳坡 | 0.36 | 0.32 | 0.40 | 0.44 | - | |
半阳坡 | 0.35 | 0.31 | 0.38 | 0.45 | 0.52 | |
FVC覆沙砒砂岩区 | 阴坡 | 0.48 | 0.47 | 0.51 | 0.52 | 0.59 |
半阴坡 | 0.49 | 0.47 | 0.51 | 0.51 | 0.35 | |
阳坡 | 0.50 | 0.49 | 0.52 | 0.52 | 0.43 | |
半阳坡 | 0.49 | 0.49 | 0.5 | 0.54 | 0.46 | |
FVC覆土砒砂岩区 | 阴坡 | 0.58 | 0.57 | 0.58 | 0.61 | 0.61 |
半阴坡 | 0.59 | 0.57 | 0.57 | 0.57 | 0.52 | |
阳坡 | 0.58 | 0.57 | 0.58 | 0.59 | 0.53 | |
半阳坡 | 0.55 | 0.58 | 0.59 | 0.61 | 0.62 |
Tab. 2
Cv values at different elevations and gradients in the soft rock area"
类型 | 分级 | Cv裸露砒砂岩区/% | Cv覆沙砒砂岩区/% | Cv覆土砒砂岩区/% | CvMean/% |
---|---|---|---|---|---|
高程 | ≤1000 m | - | -6.8 | 0.4 | 0.1 |
1000~1100 m | 13.8 | 0.3 | 0.4 | 0.3 | |
1100~1200 m | -4.9 | -0.2 | -1.0 | -0.8 | |
1200~1300 m | -1.1 | -4.0 | -2.3 | -1.7 | |
1300~1400 m | -0.2 | -2.1 | -3.1 | -0.1 | |
1400~1500 m | -0.4 | -3.9 | -2.2 | -2.0 | |
>1500 m | 0.7 | -4.4 | - | -1.8 | |
坡度 | ≤2° | -4.0 | -1.4 | 2.5 | 0.1 |
2°~6° | 0.2 | -3.4 | -0.7 | -0.3 | |
6°~15° | 2.9 | -1.2 | -1.5 | 0.6 | |
15°~25° | 2.9 | -4.2 | -1.0 | -1.4 | |
>25° | - | 23.3 | 1.7 | 1.9 |
Tab. 3
Vegetation carrying capacity of each soft rock area in a certain elevation range"
砒砂岩区类型 | 坡度 | 坡向 | 植被 覆盖度 | 地上生物量 /(g·m-2) |
---|---|---|---|---|
覆土砒砂岩区 高程1100~1200 m | <2° | 阴坡 | 0.75 | 223.74 |
半阴坡 | 0.76 | 224.62 | ||
阳坡 | 0.762 | 225.69 | ||
半阳坡 | 0.76 | 225.49 | ||
2°~25° | 阴坡 | 0.73 | 220.16 | |
半阴坡 | 0.72 | 218.23 | ||
阳坡 | 0.73 | 219.20 | ||
半阳坡 | 0.72 | 217.02 | ||
>25° | 阴坡 | 0.69 | 224.30 | |
半阴坡 | 0.66 | 199.87 | ||
阳坡 | 0.73 | 219.45 | ||
半阳坡 | 0.67 | 195.55 | ||
覆沙砒砂岩区 高程1000~1200 m | <15° | 阴坡 | 0.71 | 214.28 |
半阴坡 | 0.75 | 223.21 | ||
阳坡 | 0.75 | 223.02 | ||
半阳坡 | 0.76 | 226.73 | ||
15°~25° | 阴坡 | 0.72 | 216.65 | |
半阴坡 | 0.71 | 213.18 | ||
阳坡 | 0.53 | 210.48 | ||
半阳坡 | 0.70 | 211.91 | ||
>25° | 阴坡 | 0.62 | 194.65 | |
半阴坡 | 0.55 | 179.45 | ||
阳坡 | 0.74 | 220.54 | ||
半阳坡 | 0.37 | 155.54 | ||
裸露砒砂岩区 高程1000~1200 m | <15° | 阴坡 | 0.80 | 234.28 |
半阴坡 | 0.80 | 234.05 | ||
阳坡 | 0.73 | 219.27 | ||
半阳坡 | 0.77 | 226.33 | ||
15°~25° | 阴坡 | 0.71 | 213.93 | |
半阴坡 | 0.61 | 193.13 | ||
阳坡 | 0.61 | 192.98 | ||
半阳坡 | 0.65 | 200.29 | ||
>25° | 阴坡 | - | - | |
半阴坡 | - | - | ||
阳坡 | - | - | ||
半阳坡 | - | - |
[1] | 邓起东, 程绍平, 闵伟, 等. 鄂尔多斯块体新生代构造活动和动力学的讨论[J]. 地质力学学报, 1999, 19(3): 13-21. |
[Deng Qidong, Cheng Shaoping, Min Wei, et al. Discussion on cenozoic tectonics and dynamics of Ordos Block[J]. Chinese Journal of Geomechanics, 1999, 19(3): 13-21.] | |
[2] | 王立久, 李长明, 董晶亮. 砒砂岩分布及岩性特征[J]. 人民黄河, 2013, 35(12): 91-93, 97. |
[Wang Lijiu, Li Changming, Dong Jingliang. Study on distribution and lithologic characters of feldspathic Sandstone[J]. Yellow River, 2013, 35(12): 91-93, 97.] | |
[3] | 董晶亮, 陈磊伟, 郑福焱, 等. 砒砂岩的结构组成研究[J]. 华东交通大学学报, 2022, 39(5): 10-19. |
[Dong Jingliang, Chen Leiwei, Zheng Fuyan, et al. Study on the structural composition of Pisha Sandstone[J]. Journal of East China Jiaotong University, 2022, 39(5): 10-19.] | |
[4] |
杨霜奇, 宋乃平, 王兴, 等. 荒漠草原灰钙土与风沙土水分时空特征[J]. 干旱区研究, 2023, 40(10): 1625-1636.
doi: 10.13866/j.azr.2023.10.09 |
[Yang Shuangqi, Song Naiping, Wang Xing, et al. Spatiotemporal characteristics of sierozem and aeolian soil moisture levels in a desert steppe[J]. Arid Land Research, 2023, 40(10): 1625-1636.] | |
[5] | 许吉康. 砒砂岩区不同生态修复植被根际土壤微生态环境特征及土壤质量评价[D]. 呼和浩特: 内蒙古农业大学, 2023. |
[Xu Jikang. Rhizosphere Soil Microecological Environment Characteristics and Soil Quality Evaluation of Different Ecological Restoration Vegetation in the Arsenic Sandstone Area[D]. Hohhot: Inner Mongolia Agricultural University, 2023.] | |
[6] | 李金霞. 鄂尔多斯高原西部植被—土壤—土壤动物对荒漠化的响应[D]. 长春: 东北师范大学, 2012. |
[Li Jinxia. The response of Vegetation-Soil-Soil Fauna to Desertificationin the Western of Ordos Plateau[D]. Changchun: Northeast Normal University, 2012.] | |
[7] | Liang Z S, Wu Z R, Yao W, et al. Pisha sandstone: Causes, processes and erosion options for its control and prospects[J]. International Soil and Water Conservation Research, 2019, 7(1): 1-8. |
[8] | 张鹤. 砒砂岩区不同植被恢复和覆土厚度下土壤性状特征及质量评价[D]. 杨凌: 西北农林科技大学, 2023. |
[Zhang He. Arsenic Soil Properties and Quality Evaluation Under Different Vegetation Restoration and Soil Covering Thickness in Pisha Sandstone Area[D]. Yangling: Northwest A & F University, 2023.] | |
[9] |
王娟, 王钊, 郭斌, 等. 陕西黄河流域植被碳利用率时空特征及对气候的敏感性研究[J]. 干旱区研究, 2023, 40(12): 1959-1968.
doi: 10.13866/j.azr.2023.12.09 |
[Wang Juan, Wang Zhao, Guo Bin, et al. Spatiotemporal characteristics of vegetation carbon use efficiency and its sensitivity to climate in the Yellow River Basin in Shaanxi Province[J]. Arid Zone Research, 2023, 40(12): 1959-1968.]
doi: 10.13866/j.azr.2023.12.09 |
|
[10] | 洪光宇. 毛乌素沙地杨柴和沙柳的蒸腾耗水特征及人工林地植被承载力[D]. 呼和浩特: 内蒙古农业大学, 2021. |
[Hong Guangyu. Vegetation Water Consumption and Soil Water Vegetation Carrying Capacity of Hedysarum leave and Salix psammophila Plantations in Mu Us Desert Land[D]. Hohhot: Inner Mongolia Agricultural University, 2021.] | |
[11] | Jiao L, An W M, Li Z S, et al. Regional variation in soil water and vegetation characteristics in the Chinese Loess Plateau[J]. Ecological Indicators, 2020, 115(10): 63-99. |
[12] | Wang R J, Yan F, Wang Y J. Vegetation growth status and topographic effects in the Pisha Sandstone Area of China[J]. Remote Sensing, 2020, 12(17): 2759-2759. |
[13] |
高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究[J]. 地理学报, 2017, 72(5): 863-874.
doi: 10.11821/dlxb201705008 |
[Gao Haidong, Pang Guowei, Li Zhanbin, et al. Evaluating the potential of vegetation restoration in the Loess Plateau[J]. Acta Geographica Sinica, 2017, 72(5): 863-874.]
doi: 10.11821/dlxb201705008 |
|
[14] | 刘广全, 匡尚富, 土小宁, 等. 黄土高原生态脆弱地带植被恢复水资源承载能力[J]. 国际沙棘研究与开发, 2010, 8(1): 13-20. |
[Liu Guangquan, Kuang Shangfu, Tu Xiaoning, et al. Water resources carrying capacity for vegetation restoration of eco-fragile region in the Loess Plateau[J]. International Research and Development of Sea-buckthorn, 2010, 8(1): 13-20.] | |
[15] | 张举涛. 中国北方典型沙区植被承载力研究[D]. 北京: 北京林业大学, 2020. |
[Zhang Jutao. Carrying Capacity for Vegetation Across Typical Sandy Regions in Northern China[D]. Beijing: Beijing Forestry University, 2020.] | |
[16] | 朱雅娟, 党宏忠, 杜娟, 等. 覆土砒砂岩区沙棘耗水量及其影响因子[J]. 水土保持研究, 2020, 27(4): 171-177, 183. |
[Zhu Yajuan, Dang Hongzhong, Du Juan, et al. Water Consumption of Hippophae rhamnoides and its affecting factors in Loess-Covered Pisha Rock Area[J]. Research of Soil and Water Conservation, 2020, 27(4): 171-177, 183.] | |
[17] | 王瑞杰, 吴林荣, 闫峰. 基于人粮关系的鄂尔多斯砒砂岩区土地资源承载力变化特征[J]. 水土保持通报, 2019, 39(6): 142-148, 154. |
[Wang Ruijie, Wu Linrong, Yan Feng. Variation characteristics of land resources carrying capacity in Ordos field spathic sandstone area based on man-grain relationship[J]. Bulletin of Soil and Water Conservation, 2019, 39(6): 142-148. 154.] | |
[18] | 夏静芳. 沙棘人工林水土保持功能与植被配置模式研究——以内蒙古准格尔旗砒砂岩地区为例[D]. 北京: 北京林业大学, 2012. |
[Xia Jingfang. A Study on the Soil and Water Conservation Functions of Artifical Sea-buckthorn Forests and the Vegetation Constration Model in the Sandstone Areas of Jungar Banner, Inner Mongolia[D]. Beijing: Beijing Forestry University, 2012.] | |
[19] |
周静, 孙永峰, 丁杰萍, 等. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464.
doi: 10.13866/j.azr.2023.09.09 |
[Zhou Jing, Sun Yongfeng, Ding Jieping, et al. Changes in vegetation biomass and its relationship with soil carbon during restoration processes in degraded sandy grasslands[J]. Arid Zone Research, 2023, 40(9): 1457-1464.]
doi: 10.13866/j.azr.2023.09.09 |
|
[20] | 姚文艺, 李长明, 张攀, 等. 砒砂岩侵蚀机理研究与展望[J]. 人民黄河, 2018, 40(6): 1-7, 65. |
[Yao Wenyi, Li Changming, Zhang Pan, et al. Prospect and research on the erosion mechanism of Pisha Sandstone[J]. Yellow River of People, 2018, 40(6): 1-7, 65.] | |
[21] | 苏涛, 张兴昌, 王仁君, 等. 植被覆盖对砒砂岩地区边坡侵蚀的减流减沙效益[J]. 水土保持学报, 2015, 29(3): 98-101, 255. |
[Su Tao, Zhang Xingchang, Wang Renjun, et al. Effect of vegetation coverage on slope runoff and sediment reduction in Pisha Sandstone region[J]. Journal of Soil and Water Conservation, 2015, 29(3): 98-101, 255.] | |
[22] | 王婧, 李龙, 张鹏, 等. 植被格局对砒砂岩坡地降雨侵蚀的影响[J]. 生态学报, 2024, 44(9): 3934-3947. |
[Wang Jing, Li Long, Zhang Peng, et al. Effects of vegetation pattern on rainfall erosion on Pisha sandstone slope land[J]. Acta Ecologica Sinica, 2024, 44(9): 3934-3947.] | |
[23] |
韩高玲, 霍建强, 赵燕翘, 等. 鄂尔多斯高原砒砂岩地区草本物种组成及多样性[J]. 中国沙漠, 2023, 43(3): 243-251.
doi: 10.7522/j.issn.1000-694X.2023.00025 |
[Han Gaoling, Huo Jianqiang, Zhao Yanqiao, et al. Analysis of herbaceous species composition and diversity in the Ordos Arsenic Sandstone Areas[J]. Journal of Desert Research, 2023, 43(3): 243-251.]
doi: 10.7522/j.issn.1000-694X.2023.00025 |
|
[24] |
赵蒙恩, 闫庆武, 刘政婷, 等. 鄂尔多斯市土壤侵蚀时空演变及影响因子分析[J]. 干旱区研究, 2022, 39(6): 1819-1831.
doi: 10.13866/j.azr.2022.06.12 |
[Zhao Meng’en, Yan Qingwu, Liu Zhengting, et al. Analysis of temporal and spatial evolution and influencing factors of soil erosion in Ordos City[J]. Arid Zone Research, 2022, 39(6): 1819-1831.]
doi: 10.13866/j.azr.2022.06.12 |
|
[25] | 张换迪. 鄂尔多斯砒砂岩区植物和土壤微生物多样性研究[D]. 呼和浩特: 内蒙古大学, 2019. |
[Zhang Huandi. Study on Plant and Microorganism Diversity of Pisha Sandstone Area in Ordos[D]. Hohhot: Inner Mongolia University, 2019.] | |
[26] | 中华人民共和国土地管理行业标准(TD/T 1014—2007)[S]. 北京: 中华人民共和国国土资源部, 2007. |
[Land Management Industry Standard of the People’s Republic of China (TD/T 1014-2007)[S]. Beijin: Ministry of Land and Resources of the People’s Republic of China, 2007.] | |
[27] |
王瑞杰, 闫峰. 2000—2018年西北砒砂岩区植被覆盖度与地形效应[J]. 应用生态学报, 2020, 31(4): 1194-1202.
doi: 10.13287/j.1001-9332.202004.005 |
[Wang Ruijie, Yan Feng. Fractional vegetation cover and topographic effects in Pisha sandstone area of Northwest China in 2000-2018[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1194-1202.]
doi: 10.13287/j.1001-9332.202004.005 |
|
[28] | 高丽, 朱清芳, 闫志坚, 等. 放牧对鄂尔多斯高原油蒿草场生物量及植被-土壤碳密度的影响[J]. 生态学报, 2017, 37(9): 3074-3083. |
[Gao Li, Zhu Qingfang, Yan Zhijian, et al. Effects of grazing on plant biomass and the carbon density of vegetation and soil in the Artemisia ordosica shrubland of the Ordos Plateau[J]. Acta Ecologica Sinica, 2017, 37(9): 3074-3083.] | |
[29] | Holben B N, Justice C O. The topographic effect on spectral response from nadir-pointing sensors[J]. Photogrammetric Engineering and Remote Sensing, 1980, 46: 1191-1200. |
[30] | Wang R J, Yan F, Wang Y J. Vegetation growth status and topographic effects in the Pisha Sandstone Area of China[J]. Remote Sensing, 2020, 12(17): 2749-2759. |
[31] | Fen L, Wei C, Yuan Z, et al. Improving estimates of grassland fractional vegetation cover based on a pixel dichotomy model: A case study in Inner Mongolia, China[J]. Remote Sensing, 2014, 6(6): 4705-4722. |
[32] | 王愿昌, 吴永红, 寇权, 等. 砒砂岩分布范围界定与类型区划分[J]. 中国水土保持科学, 2007, 5(1): 14-18. |
[Wang Yuanchang, Wu Yonghong, Kou Quan, et al. Definition of arsenic rock zone borderline and its classification[J]. Science of Soil and Water Conservation in China, 2007, 5(1): 14-18.] | |
[33] | 杨静涵. 基于三维模拟的黄土丘陵沟壑区小流域土壤养分特征差异分析[D]. 杨凌: 西北农林科技大学, 2021. |
[Yang Jinghan. Difference Analysis of Soil Nutrient Characteristics in Small Watershed in Loess Hilly Region Based on the Three-Dimensional Simulation[D]. Yangling: Northwest A & F University, 2021.] | |
[34] | 贾海坤, 刘颖慧, 徐霞, 等. 皇甫川流域柠条林地水分动态模拟-坡度、坡向、植被密度与土壤水分的关系[J]. 植物生态学报, 2005, 51(6): 44-51. |
[Jia Haikun, Liu Yinghui, Xu Xia, et al. Simulation of soil water dynamics in a Caragana intermedia woodland in Huangfuchuan watershed: Relationship among slope, aspect, plant density and soil water content[J]. Chinese Journal of Plant Ecology, 2005, 51(6): 44-51.] | |
[35] | 翟鹏程. 基于遥感的植被生物量估算及其承载力评价[D]. 唐山: 华北理工大学, 2018. |
[Zhai Pengcheng. Estimation of Vegetation Biomass Based on Remote Sensing and Its Bearing Capacity Evaluation[D]. Tangshan: North China University of Science and Technology, 2018.] | |
[36] | 张占清. 2011年异常气候影响下的鄂尔多斯[J]. 内蒙古气象, 2011, 35(6): 123-124. |
[Zhang Zhanqing. Ordos under the influence of abnormal climate in 2011[J]. Inner Mongolia Meteorology, 2011, 35(6): 123-124.] | |
[37] | 姜亚东, 郭威星, 秦玉英, 等. 西鄂尔多斯不同灌丛类型地上生物量与土壤理化性质研究[J]. 环境与发展, 2023, 35(3): 38-47. |
[Jiang Yadong, Guo Weixing, Qin Yuying, et al. Study on aboveground biomass and soil physicochemical properties of different shrub types in Western Ordos[J]. Environment and Development, 2023, 35(3): 38-47.] |
[1] | WAN Jiayi, SHI Jiayu, ZHANG Huamin, LI Lanhui, DING Mingjun. Soil moisture variation characteristics of alpine meadow with different cover types in the Three-River Source Region [J]. Arid Zone Research, 2024, 41(8): 1343-1353. |
[2] | WU Siyuan, HAO Lina. Changes in vegetation cover and driving factors in the Yellow River Basin from 2001 to 2021 [J]. Arid Zone Research, 2024, 41(8): 1373-1384. |
[3] | ZHAO Dongying, MENG Zhongju, MENG Ruibing, MA Ze. Dynamic change characteristics and driving forces of vegetation cover in the Ulan Buhe Desert along the Yellow River [J]. Arid Zone Research, 2024, 41(4): 639-649. |
[4] | MA Yaoyao, SHI Peijun, XU Wei, ZHANG Gangfeng. Remote sensing monitoring of the ecological environment of hydropower station construction and operation in arid areas: A case study of Longyangxia Hydropower Station [J]. Arid Zone Research, 2023, 40(9): 1498-1508. |
[5] | LI Xinlei, LI Ruiping, WANG Xiuqing, WANG Sinan, WANG Chengkun. Spatiotemporal change and analysis of factors driving forest-grass vegetation coverage in Hetao Irrigation District based on geographical detector [J]. Arid Zone Research, 2023, 40(4): 623-635. |
[6] | WEI Yajuan, DANG Xiaohong, WANG Ji, HAN Yanlong, XIE Yunhu, LIN Bo. Morphological characteristics of Nitraria tangutorum nebkhas in Jilantai desert-oasis ecotone [J]. Arid Zone Research, 2023, 40(3): 403-411. |
[7] | FANG He,YAN Peiwen,SHI Jian,KANG Juan,LIU Hairong,CHEN Dan,LUO Ji,XU Dong. Temporal and spatial variation of vegetation ecological quality and its driving mechanism in Aksu prefecture [J]. Arid Zone Research, 2022, 39(6): 1907-1916. |
[8] | CAO Yongxiang,MAO Donglei,Xue Jie,SU Songling,Kaimaierguli Abulaiti,CAI Fuyan. Dynamic changes and driving factors of vegetation cover in the oasis-desert ecotone: A case study of Cele, Xinjiang [J]. Arid Zone Research, 2022, 39(2): 510-521. |
[9] | SUN Yanxu,ZHOU Zixiang,MI Zhaojuan. Grey correlation analysis of human activities and watershed biodiversity based on land use and cover change [J]. Arid Zone Research, 2021, 38(6): 1782-1792. |
[10] | LIU Lu,CHEN Yapeng,LI Xiaoyang. Effect of ecological water conveyance on groundwater depth and vegetation in the Kongque River [J]. Arid Zone Research, 2021, 38(4): 901-909. |
[11] | LI Ziyu,CHENG Qihui,HUANG Feng,GUO Zhentian. Spatiotemporal evolution of vegetation coverage in Alhagi sparsifolia Reserve in Turpan Basin, Xinjiang [J]. Arid Zone Research, 2021, 38(4): 1104-1110. |
[12] | JIA Songtao,HUANG Shengzhi,WANG Hao,LI Ziyan,HUANG Qiang,LIANG Hao. Simulation of vegetation change based on BP-SVM mode [J]. Arid Zone Research, 2021, 38(4): 1085-1093. |
[13] | QU Yingbo,ZHAO Yuanyuan,DING Guodong,GAO Guanglei. Effects of climate and human activities on vegetation cover changes in Xilingol steppe [J]. Arid Zone Research, 2021, 38(3): 802-811. |
[14] | ZHANG Yuan-hao, Ala Musa, YIN Jia-wang, JIANG Shao-yan. Spatial and temporal variations in sand dune soil moisture content and groundwater depth [J]. Arid Zone Research, 2020, 37(6): 1427-1436. |
[15] | LI Zhe-hua, , LI Sheng-yu, LI Bing-wen, FAN Jing-long, JIANG Jin, LI Ya-ping , , SONG Chun-wu. Spatial Variation of Soil Chemical Properties of Longitudinal Dunes with Different Vegetation Coverage Levels [J]. Arid Zone Research, 2020, 37(1): 160-167. |
|