Arid Zone Research ›› 2021, Vol. 38 ›› Issue (4): 1085-1093.doi: 10.13866/j.azr.2021.04.20
• Plant and Plant Physiology • Previous Articles Next Articles
JIA Songtao1(),HUANG Shengzhi1(),WANG Hao2,LI Ziyan1,HUANG Qiang1,LIANG Hao1
Received:
2020-12-15
Revised:
2021-02-10
Online:
2021-07-15
Published:
2021-08-03
Contact:
Shengzhi HUANG
E-mail:jst20156458@163.com;huangshengzhi7788@126.com
JIA Songtao,HUANG Shengzhi,WANG Hao,LI Ziyan,HUANG Qiang,LIANG Hao. Simulation of vegetation change based on BP-SVM mode[J].Arid Zone Research, 2021, 38(4): 1085-1093.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Multiple linear regression, artificial neural network and support vector machine predict NDVI"
研究区域 | 类别 | 多元线性回归 | 人工神经网络 | 支持向量机 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
纳什系数 | 均方根误差 | 平均相对误差 | 纳什系数 | 均方根误差 | 平均相对误差 | 纳什系数 | 均方根误差 | 平均相对误差 | ||||
泾河 | 训练期 | 0.820 | 0.066 | 0.203 | 0.936 | 0.038 | 0.118 | 0.928 | 0.040 | 0.115 | ||
验证期 | 0.731 | 0.092 | 0.224 | 0.750 | 0.088 | 0.183 | 0.761 | 0.086 | 0.177 | |||
北洛河 | 训练期 | 0.832 | 0.077 | 0.187 | 0.953 | 0.040 | 0.092 | 0.953 | 0.040 | 0.083 | ||
验证期 | 0.544 | 0.128 | 0.205 | 0.611 | 0.120 | 0.191 | 0.663 | 0.103 | 0.184 |
Tab. 2
Comparison of prediction results in multiple factors input-model"
研究区域 | 模型类别 | 降雨气温两因子 | 降雨、气温、土壤湿度、日照多因子 | |||||
---|---|---|---|---|---|---|---|---|
纳什系数 | 均方根误差 | 平均相对误差 | 纳什系数 | 均方根误差 | 平均相对误差 | |||
泾河 | 训练期 | 0.928 | 0.040 | 0.115 | 0.942 | 0.036 | 0.099 | |
验证期 | 0.761 | 0.086 | 0.177 | 0.729 | 0.079 | 0.167 | ||
北洛河 | 训练期 | 0.953 | 0.040 | 0.083 | 0.959 | 0.041 | 0.084 | |
验证期 | 0.663 | 0.103 | 0.184 | 0.670 | 0.118 | 0.188 |
Tab. 3
Correlation coefficient between various climatic factors and NDVI in different regions"
研究区域 | 气候因子 | 滞后时间/月 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
泾河 | NDVI | - | 0.80 | 0.42 | 0.01 | -0.42 | -0.78 | -0.90 | -0.78 | -0.41 | 0.01 | 0.42 | 0.78 | 0.97 |
降雨 | 0.90 | 0.88 | 0.62 | 0.19 | -0.30 | -0.70 | -0.91 | -0.88 | -0.62 | -0.18 | 0.31 | 0.69 | 0.90 | |
气温 | 0.68 | 0.60 | 0.32 | -0.04 | -0.35 | -0.59 | -0.69 | -0.61 | -0.37 | 0.01 | 0.37 | 0.59 | 0.68 | |
土壤湿度 | -0.15 | -0.32 | -0.41 | -0.38 | -0.23 | -0.05 | 0.15 | 0.33 | 0.43 | 0.41 | 0.26 | 0.03 | -0.20 | |
日照 | 0.20 | 0.33 | 0.35 | 0.31 | 0.17 | 0.01 | -0.17 | -0.30 | -0.38 | -0.36 | -0.24 | -0.02 | 0.18 | |
北洛河 | NDVI | - | 0.42 | 0.00 | -0.43 | -0.79 | -0.92 | -0.78 | -0.42 | 0.01 | 0.43 | 0.79 | 0.98 | 0.79 |
降雨 | 0.90 | 0.87 | 0.61 | 0.17 | -0.31 | -0.71 | -0.92 | -0.88 | -0.61 | -0.16 | 0.32 | 0.71 | 0.90 | |
气温 | 0.75 | 0.64 | 0.33 | -0.08 | -0.41 | -0.64 | -0.73 | -0.63 | -0.38 | 0.03 | 0.42 | 0.66 | 0.75 | |
土壤湿度 | -0.20 | -0.37 | -0.45 | -0.40 | -0.22 | -0.01 | 0.17 | 0.33 | 0.42 | 0.40 | 0.26 | 0.01 | -0.22 | |
日照 | 0.16 | 0.30 | 0.32 | 0.29 | 0.15 | -0.01 | -0.15 | -0.25 | -0.32 | -0.31 | -0.21 | -0.02 | 0.14 |
Tab. 4
Prediction results based on support vector machine with/without time lag"
研究区域 | 类别 | 考虑滞时的预测模型 | 不考虑滞时的预测模型 | |||||
---|---|---|---|---|---|---|---|---|
纳什系数 | 均方根误差 | 平均相对误差 | 纳什系数 | 均方根误差 | 平均相对误差 | |||
泾河 | 训练期 | 0.982 | 0.020 | 0.048 | 0.940 | 0.037 | 0.103 | |
验证期 | 0.880 | 0.062 | 0.140 | 0.787 | 0.082 | 0.183 | ||
北洛河 | 训练期 | 0.989 | 0.020 | 0.038 | 0.947 | 0.042 | 0.085 | |
验证期 | 0.927 | 0.056 | 0.112 | 0.687 | 0.115 | 0.185 |
[1] | 刘家福, 马帅, 李帅, 等. 1982—2016年东北黑土区植被NDVI动态及其对气候变化的响应[J]. 生态学报, 2018, 38(21):7647-7657. |
[ Liu Jiafu, Ma Shuai, Li Shuai, et al. Changes in vegetation NDVI from 1982 to 2016 and its responses to climate change in the black-soilarea of Northeast China[J]. Acta Ecologica Sinica, 2018, 38(21):7647-7657. ] | |
[2] | 田甜, 李绍才, 陈敏, 等. 雅砻江流域植被指数长时间序列变化分析[J]. 水力发电学报, 2012, 31(2):159-164. |
[ Tian Tian, Li Shaocai, Chen Min, et al. Analysis on vegetation index’s long time series dynamics of Yalong River basin[J]. Journal of Hydroelectric Engineering, 2012, 31(2):159-164. ] | |
[3] | 杨峰, 李建龙, 钱育蓉, 等. 天山北坡典型退化草地植被覆盖度监测模型构建与评价[J]. 自然资源学报, 2012, 27(8):1340-1348. |
[ Yang Feng, Li Jianlong, Qian Yurong, et al. Estimating vegetation coverage of typical degraded grassland in the Northern Tianshan Mountains[J]. Journal of Natural Resources, 2012, 27(8):1340-1348. ] | |
[4] | 何辉, 玉素甫江·如素力. 2001—2015年伊犁地区植被NDVI变化及其影响因子的相对作用分析[J]. 中南林业科技大学学报, 2019, 39(10):76-87. |
[ He Hui, Yusufujiang Rusuli. Analysis of the relative role of vegetation cover changes and its influencing factors in Yili area from 2001 to 2015[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10):76-87. ] | |
[5] | 郭铌, 管晓丹. 植被状况指数的改进及在西北干旱监测中的应用[J]. 地球科学进展, 2007, 22(11):1160-1168. |
[ Guo Ni, Guan Xiaodan. An improvment of the vegetation condition index with applications to the drought monitoring in Northwest China[J]. Advances in Earth Science, 2007, 22(11):1160-1168. ] | |
[6] | 杜加强, 高云, 贾尔恒•阿哈提, 等. 近30年新疆植被生长异常值时空变化及驱动因子[J]. 生态学报, 2016, 36(7):1915-1927. |
[ Du Jiaqiang, Gao Yun, Jiaerheng Ahati, et al. Spatio-temporal patterns and driving factors of vegetation growth anomalies in Xinjiang over the last three decades[J]. Acta Ecologica Sinica, 2016, 36(7):1915-1927. ] | |
[7] |
Wu D H, Zhao X, Huang K C, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9):3520-3531.
doi: 10.1111/gcb.2015.21.issue-9 |
[8] | 陶帅, 邝婷婷, 彭文甫, 等. 2000-2015年长江上游NDVI时空变化及驱动力——以宜宾市为例[J]. 生态学报, 2020, 40(14):5029-5043. |
[ Tao Shuai, Kuang Tingting, Peng Wenfu, et al. Analyzing the spatio-temporal variation and drivers of NDVI in upper reaches ofthe Yangtze River from 2000 to 2015: A case study of Yibin City[J]. Acta Ecologica Sinica, 2020, 40(14):5029-5043. ] | |
[9] | 李登科, 郭铌, 何慧娟. 陕北长城沿线风沙区植被指数变化及其与气候的关系[J]. 生态学报, 2007, 27(11):4620-4629. |
[ Li Dengke, Guo Ni, He Huijuan. Vegetation change and its relationship with climate in the region along the Great Wall in northern Shaanxi[J]. Acta Ecologica Sinica, 2007, 27(11):4620-4629. ] | |
[10] |
孙锐, 陈少辉, 苏红波. 黄土高原不同生态类型NDVI时空变化及其对气候变化响应[J]. 地理研究, 2020, 39(5):1200-1214.
doi: 10.11821/dlyj020190399 |
[ Sun Rui, Chen Shaohui, Su Hongbo. Spatiotemporal variation of NDVI in different ecotypes on the Loess Plateau and its response to climate change[J]. Geographical Research, 2020, 39(5):1200-1214. ]
doi: 10.11821/dlyj020190399 |
|
[11] | 王伦澈. 区域大气辐射变化及其对地表植被生产力的定量影响研究[D]. 武汉: 武汉大学, 2015. |
[ Wang Lunche. Reginal Variations of Atmosphere Radiation and its Quantitative Effects on the Terrestrial Ecosystem Productivity[D]. Wuhan: Wuhan University, 2015. ] | |
[12] | 张满囤, 黄春萌, 米娜, 等. 基于支持向量机回归的NDVI组合预测模型[J]. 河北工业大学学报, 2017, 46(4):39-45. |
[ Zhang Mantun, Huang Chunmeng, Mi Na, et al. Combination forecast model of NDVI based on support vector machine regression[J]. Journal of Hebei University of Technology, 2017, 46(4):39-45. ] | |
[13] |
Zhou Zhaoqiang, Ding Yibo, Shi Haiyun, et al. Analysis and prediction of vegetation dynamic changes in China: Past, present and future[J]. Ecological Indicators, 2020, 117:106642.
doi: 10.1016/j.ecolind.2020.106642 |
[14] | 杨曦, 武建军, 闫峰, 等. 基于地表温度植被指数特征空间的区域土壤干湿状况[J]. 生态学报, 2009, 29(3):1205-1216. |
[ Yang Xi, Wu Jianjun, Yan Feng, et al. Assessment of regional soil moisture status based on characteristics of surface temperature vegetation index space[J]. Acta Ecologica Sinica, 2009, 29(3):1205-1216. ] | |
[15] |
Tian Siyuan, Van Dijk A I J M, Paul Tregoning, et al. Forecasting dryland vegetation condition months in advance through satellite data assimilation[J]. Nature Communications, 2019, 10:469.
doi: 10.1038/s41467-019-08403-x pmid: 30692539 |
[16] | 裴志林, 杨勤科, 王春梅, 等. 黄河上游植被覆盖度空间分布特征及其影响因素[J]. 干旱区研究, 2019, 36(3):546-555. |
[ Pei Zhilin, Yang Qinke, Wang Chunmei, et al. Spatial distribution of vegetation coverage and its affecting factors in the upper reaches of the Yellow River[J]. Arid Zone Research, 2019, 36(3):546-555. ] | |
[17] | 刘静. 退耕还林后黄土高原植被覆被变化过程及未来分布预测[D]. 北京: 中国科学院大学, 2019. |
[ Liu Jing. Vegetation Cover Change Process and Future Distribution Prediction on the Loess Plateau after Grain to Green[D]. Beijing: University of Chinese Academy of Science, 2019. ] | |
[18] | 陈末, 卢文喜, 侯泽宇, 等. 基于支持向量机的吉林西部地下水水质评价[J]. 节水灌溉, 2013, 38(5):29-33. |
[ Chen Mo, Lu Wenxi, Hou Zeyu, et al. The assesement of groundewater quality based on support vector machine in Western Jilin[J]. Water Saving Irrigation, 2013, 38(5):29-33. ] | |
[19] | 毛慧慧, 延耀兴, 张杰. 水文预报方法研究现状与展望[J]. 科技情报开发与经济, 2005, 15(19):172-173. |
[ Mao Huihui, Yan Yaoxing, Zhang Jie. The present situation and prospect of the hydrographic forecasting methods[J]. Journal of Library and Information Science, 2005, 15(19):172-173. ] | |
[20] | 梁浩, 黄生志, 孟二浩, 等. 基于多种混合模型的径流预测研究[J]. 水利学报, 2020, 51(1):112-125. |
[ Liang Hao, Huang Shengzhi, Meng Erhao, et al. Runoff prediction based on multiple hybrid models[J]. Journal of Hydraulic Engineering, 2020, 51(1):112-125. ] | |
[21] | 代萌, 黄生志, 黄强, 等. 干旱多属性风险动态评估与驱动力分析[J]. 水力发电学报, 2019, 38(8):15-26. |
[ Dai Meng, Huang Shengzhi, Huang Qiang, et al. Dynamic assessments of drought multi-attribute risks and analysis of its driving force[J]. Journal of Hydroelectric Engineering, 2019, 38(8):15-26. ] | |
[22] | 王秀英, 廖留峰, 王俊杰. 基于多元线性回归的滇西南短时强降水预报模型研究[J]. 气象与环境学报, 2019, 35(2):15-22. |
[ Wang Xiuying, Liao Liufeng, Wang Junjie. A forecast model for flash heavy rainfall in southwestern Yunnan province based on a multiple linear regression method[J]. Journal of Meteorology and Environment, 2019, 35(2):15-22. ] | |
[23] | 孟二浩, 黄生志, 黄强, 等. 融合大气环流异常因子的径流预报研究[J]. 水力发电学报, 2017, 36(8):34-42. |
[ Meng Erhao, Huang Shengzhi, Huang Qiang, et al. Runoff prediction incorporating anomalous atmospheric circulation factors[J]. Journal of Hydroelectric Engineering, 2017, 36(8):34-42. ] | |
[24] | 张俊. 中长期水文预报及调度技术研究与应用[D]. 大连: 大连理工大学, 2009. |
[ Zhang Jun. Mid-and-Long Term Hydrological Forecasting and Operation Techniques Research and Application[D]. Dalian: Dalian University of Technology, 2009. ] | |
[25] | 张霞, 李占斌, 张振文, 等. 两种预测模型在地下水动态中的比较与应用[J]. 生态学报, 2012, 32(21):6788-6794. |
[ Zhang Xia, Li Zhanbin, Zhang Zhenwen. Application and comparison of two prediction models for groundwater dynamics[J]. Acta Ecologica Sinica, 2012, 32(21):6788-6794. ] | |
[26] | 徐冬梅, 赵晓慎. 中长期水文预报方法研究综述[J]. 水利科技与经济, 2010, 16(1):1-7. |
[ Xu Dongmei, Zhao Xiaoshen. Review on study of mid and long-term hydrological forecasting technique[J]. Water Conservancy Science and Technology and Economy, 2010, 16(1):1-7. ] | |
[27] | 钱剑平. 基于人工神经网络的策勒河流域径流预测研究[D]. 乌鲁木齐: 新疆大学, 2018. |
[ Qian Jianping. A Study on Runoff Prediction in Qira River Basin Based on Artificial Neural Network[D]. Urumqi: Xinjiang University, 2018. ] | |
[28] | 杨汉波, 吕华芳, 胡庆芳, 等. 华北平原的大气逆辐射参数化方法比较[J]. 清华大学学报(自然科学版), 2014, 54(5):590-595. |
[ Yang Hanbo, Lyu Huafang, Hu Qingfang, et al. Comparison of parametrization methods for calculating the downward long-wave radiation over the North China Plain[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(5):590-595. ] | |
[29] | 丛晓红, 拾兵, 于西达, 等. 基于PSO-BP神经网络的黄河利津站输沙量预测[J]. 人民黄河, 2020, 42(1):1-8. |
[ Cong Xiaohong, Shi Bing, Yu Xida, et al. Prediction of sediment discharge at Lijin station of the Yellow River based on PSO-BP neural network[J]. Yellow River, 2020, 42(1):1-8. ] | |
[30] |
Anderson L O, Malhi Y, Aragão Luiz E O C, et al. Remote sensing detection of droughts in Amazonian forest canopies[J]. New Phytologist, 2010, 187(3):733-750.
doi: 10.1111/j.1469-8137.2010.03355.x |
[1] | MA Yaoyao, SHI Peijun, XU Wei, ZHANG Gangfeng. Remote sensing monitoring of the ecological environment of hydropower station construction and operation in arid areas: A case study of Longyangxia Hydropower Station [J]. Arid Zone Research, 2023, 40(9): 1498-1508. |
[2] | LI Xinlei, LI Ruiping, WANG Xiuqing, WANG Sinan, WANG Chengkun. Spatiotemporal change and analysis of factors driving forest-grass vegetation coverage in Hetao Irrigation District based on geographical detector [J]. Arid Zone Research, 2023, 40(4): 623-635. |
[3] | WEI Yajuan, DANG Xiaohong, WANG Ji, HAN Yanlong, XIE Yunhu, LIN Bo. Morphological characteristics of Nitraria tangutorum nebkhas in Jilantai desert-oasis ecotone [J]. Arid Zone Research, 2023, 40(3): 403-411. |
[4] | WU Rina, LIU Buyun, BAO Yuhai. Time lag and cumulative effect of drought on gross primary productivity in the grasslands of northern China [J]. Arid Zone Research, 2023, 40(10): 1644-1660. |
[5] | FANG He,YAN Peiwen,SHI Jian,KANG Juan,LIU Hairong,CHEN Dan,LUO Ji,XU Dong. Temporal and spatial variation of vegetation ecological quality and its driving mechanism in Aksu prefecture [J]. Arid Zone Research, 2022, 39(6): 1907-1916. |
[6] | HE Chaolu,LYU Haishen,ZHU Yonghua,LI Wentao,XIE Bingqi,XU Kaili,LIU Mingwen. Assessment of TIGGE precipitation forecast models in arid and semi-arid regions of China [J]. Arid Zone Research, 2022, 39(2): 368-378. |
[7] | CAO Yongxiang,MAO Donglei,Xue Jie,SU Songling,Kaimaierguli Abulaiti,CAI Fuyan. Dynamic changes and driving factors of vegetation cover in the oasis-desert ecotone: A case study of Cele, Xinjiang [J]. Arid Zone Research, 2022, 39(2): 510-521. |
[8] | SUN Yanxu,ZHOU Zixiang,MI Zhaojuan. Grey correlation analysis of human activities and watershed biodiversity based on land use and cover change [J]. Arid Zone Research, 2021, 38(6): 1782-1792. |
[9] | LIU Lu,CHEN Yapeng,LI Xiaoyang. Effect of ecological water conveyance on groundwater depth and vegetation in the Kongque River [J]. Arid Zone Research, 2021, 38(4): 901-909. |
[10] | LI Ziyu,CHENG Qihui,HUANG Feng,GUO Zhentian. Spatiotemporal evolution of vegetation coverage in Alhagi sparsifolia Reserve in Turpan Basin, Xinjiang [J]. Arid Zone Research, 2021, 38(4): 1104-1110. |
[11] | QU Yingbo,ZHAO Yuanyuan,DING Guodong,GAO Guanglei. Effects of climate and human activities on vegetation cover changes in Xilingol steppe [J]. Arid Zone Research, 2021, 38(3): 802-811. |
[12] | ZHANG Yuan-hao, Ala Musa, YIN Jia-wang, JIANG Shao-yan. Spatial and temporal variations in sand dune soil moisture content and groundwater depth [J]. Arid Zone Research, 2020, 37(6): 1427-1436. |
[13] | LI Zhe-hua, , LI Sheng-yu, LI Bing-wen, FAN Jing-long, JIANG Jin, LI Ya-ping , , SONG Chun-wu. Spatial Variation of Soil Chemical Properties of Longitudinal Dunes with Different Vegetation Coverage Levels [J]. Arid Zone Research, 2020, 37(1): 160-167. |
[14] | ZHAO Jun, YANG Jian-xia, ZHU Guo-feng. Effect of ecological water conveyance on vegetation coverage in surrounding area of the Qingtu Lake [J]. , 2018, 35(6): 1251-1261. |
[15] | JIANG You-yan, HAN Tao , WANG You-heng, HUANG Jin, LIU Wei-gang. Change of Ecological Vulnerability in the Minqin Oasis since Diversion of the Shiyang River Basin in 10 Years [J]. , 2014, 31(1): 157-162. |
|