Arid Zone Research ›› 2022, Vol. 39 ›› Issue (4): 1200-1211.doi: 10.13866/j.azr.2022.04.21
• Soil Ecology • Previous Articles Next Articles
GUO Yin1,2(),LEI Jiaqiang1,2,3,FAN Jinglong1,2,3(),WANG Haifeng1,2,4,LYU Zhentao1,2
Received:
2021-11-18
Revised:
2022-02-21
Online:
2022-07-15
Published:
2022-09-26
Contact:
Jinglong FAN
E-mail:guoyin19@mails.ucas.ac.cn;fanjl@ms.xjb.ac.cn
GUO Yin,LEI Jiaqiang,FAN Jinglong,WANG Haifeng,LYU Zhentao. Soil wind erosion characteristics and main influencing factors in Mongolia in recent 20 years[J].Arid Zone Research, 2022, 39(4): 1200-1211.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Pimentel D, Harvey C, Resosudarmo P, et al. Environmental and economic costs of soil erosion and conservation benefits[J]. Science, 1995, 267(5201): 1117-1123.
pmid: 17789193 |
[2] |
Lal R. Soil erosion and the global carbon budget[J]. Environment International, 2003, 29(4): 437-450.
pmid: 12705941 |
[3] |
Zhou Z L, Zhang Z D, Zou X Y, et al. Quantifying wind erosion at landscape scale in a temperate grassland: Nonignorable influence of topography[J]. Geomorphology, 2020, 370: 107401, doi: 10.1016/j.geomorph.2020.107401.
doi: 10.1016/j.geomorph.2020.107401 |
[4] |
Gholami H, Mohammadifar A, Bui D T, et al. Mapping wind erosion hazard with regression-based machine learning algorithms[J]. Scientific Reports, 2020, 10(1): 20494, doi: 10.1038/s41598-020-77567-0.
doi: 10.1038/s41598-020-77567-0 pmid: 33235269 |
[5] |
Zhao Y Y, Wu J G, He C Y, et al. Linking wind erosion to ecosystem services in drylands: A landscape ecological approach[J]. Landscape Ecology, 2017, 32(12): 2399-2417.
doi: 10.1007/s10980-017-0585-9 |
[6] |
Pi H W, Sharratt B, Lei J Q. Wind erosion and dust emissions in central Asia: Spatiotemporal simulations in a typical dust year[J]. Earth Surface Processes and Landforms, 2019, 44(2): 521-534.
doi: 10.1002/esp.4514 |
[7] |
Li H L, Tatarko J, Kucharski M, et al. PM2.5 and PM10 emissions from agricultural soils by wind erosion[J]. Aeolian Research, 2015, 19: 171-182.
doi: 10.1016/j.aeolia.2015.02.003 |
[8] |
Youssef F, Visser S, Karssenberg D, et al. Calibration of RWEQ in a patchy landscape: A first step towards a regional scale wind erosion model[J]. Aeolian Research, 2012, 3(4): 467-476.
doi: 10.1016/j.aeolia.2011.03.009 |
[9] | Fryrear D W. A field dust sampler[J]. Journal of Soil and Water Conservation, 1986, 41(2): 117-120. |
[10] |
Sirjani E, Sameni A, Moosavi A A, et al. Portable wind tunnel experiments to study soil erosion by wind and its link to soil properties in the Fars province, Iran[J]. Geoderma, 2019, 333: 69-80.
doi: 10.1016/j.geoderma.2018.07.012 |
[11] | Qi Y Q, Liu J Y, Shi H D, et al. Using 137Cs tracing technique to estimate wind erosion rates in the typical steppe region, northern Mongolian Plateau[J]. Chinese Science Bulletin, 2008, 53(9): 1423-1430. |
[12] |
Lin J, Guan Q, Pan N, et al. Spatiotemporal variations and driving factors of the potential wind erosion rate in the Hexi region, PR China[J]. Land Degradation & Development, 2020, 32(1): 139-157.
doi: 10.1002/ldr.3702 |
[13] |
Jarrah M, Mayel S, Tatarko J, et al. A review of wind erosion models: Data requirements, processes, and validity[J]. Catena, 2020, 187(16): 104388, doi: 10.1016/j.catena.2019.104388.
doi: 10.1016/j.catena.2019.104388 |
[14] | Fryrear D W, Bilbro J D, Saleh A, et al. RWEQ: Improved wind erosion technology[J]. Journal of Soil and Water Conservation, 2000, 55(2): 183-189. |
[15] |
Zhang H Y, Fan J W, Cao W, et al. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015[J]. Science of the Total Environment, 2018, 639: 1038-1050.
doi: 10.1016/j.scitotenv.2018.05.082 |
[16] |
Chi W F, Zhao Y Y, Kuang W H, et al. Impacts of anthropogenic land use/cover changes on soil wind erosion in China[J]. Science of the Total Environment, 2019, 668: 204-215.
doi: 10.1016/j.scitotenv.2019.03.015 |
[17] |
Li J Y, Ma X F, Zhang C. Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century[J]. Science of the Total Environment, 2020, 709: 136060, doi: 10.1016/j.scitotenv.2019.136060.
doi: 10.1016/j.scitotenv.2019.136060 |
[18] |
Abulaiti A, Kimura R, Shinoda M, et al. An observational study of saltation and dust emission in a hotspot of Mongolia[J]. Aeolian Research, 2014, 15: 169-176.
doi: 10.1016/j.aeolia.2014.05.002 |
[19] | 孟翔冲. 蒙古国沙质荒漠化对中国北方沙质荒漠化影响研究[D]. 长春: 吉林大学, 2012. |
[Meng Xiangchong. A Study on the Influences of Mongolia Desertification on the Desertification in Northern China[D]. Changchun: Jilin University, 2012.] | |
[20] | Oldeman L R. The global extent of soil degradation[J]. Soil Resilience and Sustainable Land Use, 1994: 99-118. |
[21] |
Natsagdorj L, Jugder D, Chung Y S. Analysis of dust storms observed in Mongolia during 1937-1999[J]. Atmospheric Environment, 2003, 37(9-10): 1401-1411.
doi: 10.1016/S1352-2310(02)01023-3 |
[22] | 师华定, 高庆先, 齐永清, 等. 蒙古高原土壤风蚀危险度的FCM模糊聚类研究[J]. 自然资源学报, 2009, 24(5): 881-889. |
[Shi Huading, Gao Qingxian, Qi Yongqing, et al. Wind erosion hazard assessment of Mongolian Plateau by using FMC fuzzy cluster method[J]. Journal of Natural Resources, 2009, 24(5): 881-889.] | |
[23] |
Mandakh N, Tsogtbaatar J, Dash D, et al. Spatial assessment of soil wind erosion using WEQ approach in Mongolia[J]. Journal of Geographical Sciences, 2016, 26(4): 473-483.
doi: 10.1007/s11442-016-1280-5 |
[24] |
Eckert S, Husler F, Liniger H, et al. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia[J]. Journal of Arid Environments, 2015, 113: 16-28.
doi: 10.1016/j.jaridenv.2014.09.001 |
[25] |
Wang J L, Cheng K, Liu Q, et al. Land cover patterns in Mongolia and their spatiotemporal changes from 1990 to 2010[J]. Arabian Journal of Geosciences, 2019, 12(24): 778, doi: 10.1007/s12517-019-4893-z.
doi: 10.1007/s12517-019-4893-z |
[26] | Nyamtseren M, Jamsran T, Sodov K, et al. Desertification Atlas of Mongolia[R]. Ulaanbaatar, 2013. |
[27] |
Meng X Y, Gao X, Li S, et al. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020[J]. Ecological Indicators, 2021, 129: 107908, doi: 10.1016/j.ecolind.2021.107908.
doi: 10.1016/j.ecolind.2021.107908 |
[28] |
Xu J, Xiao Y, Xie G D, et al. Computing payments for wind erosion prevention service incorporating ecosystem services flow and regional disparity in Yanchi County[J]. Science of the Total Environment, 2019, 674: 563-579.
doi: 10.1016/j.scitotenv.2019.03.361 |
[29] | Gilbert R O. Statistical methods for environmental pollution monitoring.by R. O. Gilbert[J]. Biometrics, 1988, 44(1): 319. |
[30] |
Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394.
doi: 10.1175/BAMS-85-3-381 |
[31] | Jun C, Ban Y F, Li S N. Open access to earth land-cover map[J]. Nature, 2014, 514(7523): 434-434. |
[32] |
Brovelli M A, Molinari M E, Hussein E, et al. The first comprehensive accuracy assessment of GlobeLand30 at a national level: Methodology and results[J]. Remote Sensing, 2015, 7(4): 4191-4212.
doi: 10.3390/rs70404191 |
[33] |
Sharratt B S, Tatarko J, Abatzoglou J T, et al. Implications of climate change on wind erosion of agricultural lands in the Columbia Plateau[J]. Weather and Climate Extremes, 2015, 10: 20-31.
doi: 10.1016/j.wace.2015.06.001 |
[34] | Shen L, Tian M, Gao J. Analysis on wind erosion and main factors in desertification control ecologincal function area of hunshandake using the revised wind erosio equation model[J]. Research of Soil and Water Conservation, 2016, 23(6): 90-97. |
[35] |
Li D J, Xu D Y, Wang Z Y, et al. The dynamics of sand-stabilization services in Inner Mongolia, China from 1981 to 2010 and its relationship with climate change and human activities[J]. Ecological Indicators, 2018, 88: 351-360.
doi: 10.1016/j.ecolind.2018.01.018 |
[36] |
Chi W F, Zhao Y Y, Kuang W H, et al. Impacts of anthropogenic land use/cover changes on soil wind erosion in China[J]. Science of the Total Environment, 2019, 668: 204-215.
doi: 10.1016/j.scitotenv.2019.03.015 |
[37] |
Wang W, Samat A, Ge Y X, et al. Quantitative soil wind erosion potential mapping for Central Asia using the Google Earth Engine platform[J]. Remote Sensing, 2020, 12(20): 3430, doi: 10.3390/rs12203430.
doi: 10.3390/rs12203430 |
[38] |
Teng Y M, Zhan J Y, Liu W, et al. Spatiotemporal dynamics and drivers of wind erosion on the Qinghai-Tibet Plateau, China[J]. Ecological Indicators, 2021, 123: 107340, doi: 10.1016/j.ecolind.2021.107340.
doi: 10.1016/j.ecolind.2021.107340 |
[39] | 刘纪远, 齐永青, 师华定, 等. 蒙古高原塔里亚特-锡林郭勒样带土壤风蚀速率的137Cs示踪分析[J]. 科学通报, 2007, 52(23): 2785-2791. |
[Liu Jiyuan, Qi Yongqing, Shi Huading, et al. Estimation of wind erosion rates by using 137Cs tracing technique: A case study in Tariat-Xilin Gol transect, Mongolian Plateau[J]. Chinese Science Bulletin, 2007, 52(23): 2785-2791.] | |
[40] |
Jugder D, Gantsetseg B, Davaanyam E, et al. Developing a soil erodibility map across Mongolia[J]. Natural Hazards, 2018, 92: 71-94.
doi: 10.1007/s11069-018-3409-6 |
[41] |
Han J, Dai H, Gu Z L. Sandstorms and desertification in Mongolia, an example of future climate events: A review[J]. Environmental Chemistry Letters, 2021, 19(6): 4063-4073.
doi: 10.1007/s10311-021-01285-w |
[1] | LU Wenjing, QU Deye, YANG Mingyue, HUANG Hanlin, YANG Shanquan. GCM-based stable isotope modelling of precipitation in the Mongolian Plateau [J]. Arid Zone Research, 2024, 41(9): 1491-1502. |
[2] | HUANG Kunlin, WU Guozhou, XU Weixin, LI Lidong, WANG Haimei, LI Hang, LI Zixiang, SI Jingke, LIU Hongbin, WU Chengna. Dynamic snowmelt process and its influencing factors in the eastern farmland region of Hulun Buir [J]. Arid Zone Research, 2024, 41(9): 1514-1526. |
[3] | ZHANG Qiaofeng, YU Hongbo, HUANG Fang. The spatiotemporal dynamics of drought and the cumulative impact on vegetation phenology in the Mongolian Plateau [J]. Arid Zone Research, 2024, 41(9): 1548-1559. |
[4] | ZHANG Hongwei, BIE Qiang, SHI Ying, SU Xiaojie, LI Xinzhang. Characteristics of vegetation cover changes in the upper reaches of the Yellow River Basin and the influencing factors [J]. Arid Zone Research, 2024, 41(8): 1385-1394. |
[5] | LIU Xin, WANG Liqun, LI Haoran, LI Yonghong, QIAO Wenguang, LI Lijuan, WANG Chenxu. Identification and optimization strategy of an ecological network in Inner Mongolia based on “service importance-habitat sensitivity-biodiversity” [J]. Arid Zone Research, 2024, 41(7): 1207-1216. |
[6] | LI Bingjie, FAN Zhitao, QU Zhicheng, YAO Shunyu, SU Xiashu, LIU Dongwei, WANG Lixin. Evaluation and prediction of ecosystem carbon storage in the Inner Mongolia section of the Yellow River Basin based on the InVEST-PLUS model [J]. Arid Zone Research, 2024, 41(7): 1217-1227. |
[7] | YE Hu, PEI Hao, JIANG Yanfeng, NA Qing, ZHANG Liwei. Properties of aerosol scattering and its influencing factors in semiarid areas of Inner Mongolia [J]. Arid Zone Research, 2024, 41(5): 730-741. |
[8] | ZHAO Lichao, ZHANG Chengfu, HE Shuai, MIAO Lin, FENG Shuang, PAN Sihan. Simulation of land surface temperature in complex mountainous terrain and the influence of environmental factors: A case study in Daqingshan, Inner Mongolia [J]. Arid Zone Research, 2024, 41(5): 765-775. |
[9] | HU Guanglu, LIU Peng, LI Jia’nan, TAO Hu, ZHOU Chengqian. Characteristics of soil moisture dynamics and influencing factors of three landscape types at the oasis edge in the middle reaches of the Heihe River [J]. Arid Zone Research, 2024, 41(4): 550-565. |
[10] | YUE Dalin, LI Guorong, LI Jinfang, LI Xilai, ZHAO Jianyun, ZHU Haili, LIU Yabin, HU Xiasong. Soil wind erosion and nutrient loss in typical rodent mounds in a degraded alpine grassland in the Yellow River source zone [J]. Arid Zone Research, 2024, 41(4): 603-617. |
[11] | PEI Zhilin, CAO Xiaojuan, WANG Dong, LI Di, WANG Xin, BAI Aiyuan. Spatiotemporal variation in vegetation coverage in Inner Mongolia and its response to human activities [J]. Arid Zone Research, 2024, 41(4): 629-638. |
[12] | LIU Rulong, ZHAO Yuanyuan, CHEN Guoqing, CHI Wenfeng, LIU Zhengjia. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(4): 674-683. |
[13] | WANG Xin, HAI Shan. Sustainable development scale of a typical agro-pastoral ecotone based on emergy analysis: A case study of Ulanqab City, Inner Mongolia [J]. Arid Zone Research, 2024, 41(4): 706-715. |
[14] | TAO Jifeng, BAO Yulong, GUO Enliang, Jin Eerdemutu, Husile , BAO Yuhai. Characteristics of the spatial and temporal evolution of winter drought in Inner Mongolia over the past 40 years [J]. Arid Zone Research, 2024, 41(3): 387-398. |
[15] | NIE Hanlin, FAN Liangxin, GUO Jin, ZHANG Mengke, WANG Zhijun. Spatial and temporal characteristics of crop water footprint and influencing factors in Guanzhong region at the county scale [J]. Arid Zone Research, 2024, 41(2): 339-352. |
|