›› 2018, Vol. 35 ›› Issue (3): 597-605.doi: 10.13866/j.azr.2018.03.12
Previous Articles Next Articles
CUI Jun-jie1,2, BAI Jie1, ZHENG Lei1,2, LI Yu-zhen1,2, ZHAO Hong-fei1,2, YUAN Xiu-liang1,2, LI Long-hui1
Received:
2017-10-13
Revised:
2017-11-01
Online:
2018-05-15
Published:
2018-06-01
Contact:
白洁. E-mail:baijie@ms.xjb.ac.cn
CUI Jun-jie, BAI Jie, ZHENG Lei, LI Yu-zhen, ZHAO Hong-fei, YUAN Xiu-liang, LI Long-hui. Uncertainty of Evapotranspiration Products Based on Fusion of Multi-source Remote Sensing Data and Land Surface Modes in Xinjiang[J]., 2018, 35(3): 597-605.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] 施雅风,沈永平,胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.[Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226.] [2] 周彦昭,周剑,李妍,等. 利用SEBAL和改进的SEBAL模型估算黑河中游戈壁、绿洲的蒸散发[J]. 冰川冻土, 2014, 36(6): 1 526-1 537.[Zhou Yanzhao, Zhou Jian, Li Yan, et al. Simulating the evapotranspiration with SEBAL and Modified SEBAL (M-SEBAL) models over the desert and oasis of the middle reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1 526-1 537.] [3] 张强,张之贤,问晓梅,等. 陆面蒸散量观测方法比较分析及其影响因素研究[J]. 地球科学进展, 2011, 26(5): 538-547.[Zhang Qiang, Zhang Zhixian, Wen Xiaomei, et al. Comparisons of observational methods of land surface evapotranspiration and their influence factors[J]. Advances in Earth Science, 2011, 26(5): 538-547.] [4] 赵文智,吉喜斌,刘鹄,蒸散发观测研究进展及绿洲蒸散研究展望[J]. 干旱区研究, 2011, 28(3): 463-470.[Zhao Wenzhi, Ji Xibin, Liu Hu. Progresses in evapotranspiration research and prospect in desert oasis evapotranspiration research[J]. Arid Zone Research, 2011, 28(3):463-470.] [5] Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1 781-1 800. [6] Zhang K, Kimball J S, Nemani R R, et al. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006[J]. Water Resources Research, 2010, 46(9): 109-118. [7] Martens B, Miralles D G, Lievens H, et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development Discussions, 2017, 10(5): 1-36. [8] Mueller B, Hirschi M, Jimenez C, et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis[J]. Hydrology & Earth System Sciences, 2013, 17(10): 3 707-3 720. [9] Chen Y, Xia J Z, Liang S L, et al. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China[J]. Remote Sensing of Environment, 2014, 140(1): 279-293. [10] Vinukollu R K, Meynadier R, Sheffield J, et al. Multi-model, multi-sensor estimates of global evapotranspiration: climatology, uncertainties and trends[J]. Hydrological Processes, 2011, 25(26): 3 993-4 010. [11] 李向婷,白洁,李光录,等. 新疆荒漠稀疏植被覆盖度信息遥感提取方法比较[J]. 干旱区地理, 2013, 36(3): 502-511.[Li Xiangting, Bai Jie, Li Guanglu, et al. Comparison of methods based on MODIS for estimating sparse vegetation fraction across desert in Xinjiang[J]. Arid Land Geography, 2013, 36(3): 502-511.] [12] 郝兴明,陈亚宁,李卫红,等. 胡杨根系水力提升作用的证据及其生态学意义[J]. 植物生态学报, 2009, 33(6): 1 125-1 131.[Hao Xingming, Chen Yaning, Li Weihong, et al. Evidence and ecological effects of hydraulic lift in populus euphratica[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1 125-1 131.] [13] 徐贵青,李彦. 共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J]. 生态学报, 2009, 29(1): 130-137.[Xu Guiqing, Li Yan. Roots distribution of three desert shrubs and their response to precipitation under co-occurring conditions[J]. Acta Ecologica Sinica, 2009, 29(1): 130-137.] [14] 许皓,李彦,邹婷,等. 梭梭(Haloxylon ammodendron)生理与个体用水策略对降水改变的响应[J]. 生态学报, 2007, 27(12): 5 019-5 028.[Xu Hao, Li Yan, Zhou Ting, et al. Ecophysiological response and morphological adjustment of Haloxylon ammodendron towards variation in summer precipitation[J]. Acta Ecologica Sinica, 2007, 27(12): 5 019-5 028.] [15] 胡顺军,艾尼瓦尔·吾买尔,宋郁东,等. 南疆棉田实际蒸散量的计算模式[J]. 干旱区研究, 2001, 18(1): 40-42.[Hu Shunjun, Ainiwar·Mumaier, Song Yudong, et al. Calculation model of field evapotranspiration for cotton crop[J]. Arid Zone Research, 2001, 18(1): 40-42.] [16] 周丹,沈彦俊,陈亚宁,等. 西北干旱区荒漠植被生态需水量估算[J]. 生态学杂志, 2015, 34(3): 670-680.[Zhou Dan, Shen Yanjun, Chen Yaning, et al. Estimation of ecological water requirement of desert vegetation in the arid region of northwest China[J]. Chinese Journal of Ecology, 2015, 34(3): 670-680.] [17] 黄小涛,罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518.[Huang Xiaotao, Luo Geping. Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang[J]. Chinese Journal of Plant Ecology, 2017, 41(5): 506-518.] [18] 李宝富,陈亚宁,李卫红,等. 基于遥感和SEBAL模型的塔里木河干流区蒸散发估算[J]. 地理学报, 2011, 66(9): 1 230-1 238.[Li Baofu, Chen Yaning, Li Weihong, et al. Remote sensing and the SEBAL model for estimating evapotranspiration in the Tarim River[J]. Acta Geographica Sinica, 2011, 66(9): 1 230-1 238.] [19] 谢蕾,龙爱华,邓铭江,等. 伊犁河下游三角洲生态耗水研究[J]. 冰川冻土, 2011, 33(6): 1 330-1 340.[Xie Lei, Long Aihua, Deng Mingjiang, et al. Study on ecological water consumption in Delta of the Lower Reaches of Ili River[J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1 330-1 340.] [20] Chen X, Li B L, Li Q, et al. Spatio-temporal pattern and chanses of evapotranspiration in arid Central Asia and Xinjiang of China[J]. Journal of Arid Land, 2012, 44(1): 105-112. [21] Liu B, Ma Z G, Feng J M, et al. The relationship between pan evaporation and actual evapotranspiration in Xinjiang since 1960[J]. Acta Geographica Sinica, 2008, 63(11): 1 131-1 139. [22] 宋晓猛,占车生,孔凡哲,等. 大尺度水循环模拟系统不确定性研究进展[J]. 地理学报, 2011, 66(3): 396-406.[Song Xiaomeng, Zhan Chesheng, Kong Fanzhe, et al. A review on uncertainty analysis of large-scale hydrological cycle modeling system[J]. Acta Geographica Sinica, 2011, 66(3): 396-406.] [23] Hakanson L. Error propagations in step-by-step predictions: examples for environmental management using regression models for lake ecosystems[J]. Environmental Modelling & Software, 1998, 14(1): 49-58. [24] 梁晓,戴永久. 陆面模式中土壤和植被经验参数随机误差的传播研究[J]. 大气科学, 2010, 34(2): 457-470.[Liang Xiao, Dai Yongjiu. Soil and plant parameters-related stoch as tic uncertainty propagation in the common land model[J]. Chinese Jou rn al of Atmospheric Sciences, 2010, 34(2):457-470.] [25] 梁忠民,戴荣,李彬权. 基于贝叶斯理论的水文不确定性分析研究进展[J]. 水科学进展, 2010, 21(2): 274-281.[Liang Zhongmin, Dai Rong, Li Binquan. A review of hydrological uncertainty analysis based on bayesian theory[J]. Advances in Water Science, 2010, 21(2): 274-281.] [26] 柏延臣,王劲峰. 遥感数据专题分类不确定性评价研究: 进展、问题与展望[J]. 地球科学进展, 2005, 20(11): 1 218-1 225.[Bo Yanchen, Wang Jinfeng. Assessment on uncertainty in remotely sensed data classification: progresses, problems and prospects[J]. Advances in Earth Science, 2005, 20(11): 1 218-1 225.] [27] 吴戈男,胡中民,李胜功,等. SWH双源蒸散模型模拟效果验证及不确定性分析[J]. 地理学报, 2016, 71(11): 1 886-1 897.[Wu Genan, Hu Zhongmin, Li Shenggong, et al. Evaluation and uncertainty analysis of a two-source evapotranspiration model[J]. Acta Geographica Sinica, 2016, 71(11): 1 886-1 897.] [28] Long D, Longuevergne L, Scanlon B R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites[J]. Water Resources Research, 2014, 50(2): 1 131-1 151. [29] 史玉光,孙照渤,杨青. 新疆区域面雨量分布特征及其变化规律[J]. 应用气象学报, 2008, 19(3): 326-332.[Shi Yuguang, Sun Zhaobo, Yang Qing. Characteristics of area precipitation in Xinjiang region with its variations[J]. Journal of Applied Meteorological Science, 2008, 19(3): 326-332.] [30] 肖宇,马柱国,李明星. 陆面模式中土壤湿度影响蒸散参数化方案的评估[J]. 大气科学, 2017, 41(1): 132-146.[Xiao Yu, Ma Zhuguo, Li Mingxing. Evaluation of the parameterizations of soil moisture influence on evapotranspiration in land surface models[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 132-146.] [31] Dai Y, Dickinson R E, Wang Y P. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance[J]. Journal of Climate, 2004, 17(12): 2 281-2 299. [32] Li L H, van der Tol C, Chen X, et al. Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem[J]. Journal of Hydrology, 2013, 502(2): 145-155. [33] Jing C Q, Li L H, Chen X, et al. Comparison of root water uptake functions to simulate surface energy fluxes within a deep-rooted desert shrub ecosystem[J]. Hydrological Processes, 2014, 28(21): 5 436-5 449. [34] Miralles D G, Holmes T R H, De Jeu R A M, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences, 2011, 15(2): 453-469. [35] 贺添,邵全琴. 基于MOD16产品的我国2001—2010年蒸散发时空格局变化分析[J]. 地球信息科学学报, 2014, 16(6): 979-988.[He Tian, Shao Quanqin. Spatial-temporal variation of terrestrial evapotranspiration in China from 2001 to 2010 using mod16 products[J]. Geo-Information Science, 2014, 16(6): 979-988.] [36] Bai J, Chen X, Li L H, et al. Quantifying the contributions of agricultural oasis expansion, management practices and climate change to net primary production and evapotranspiration in croplands in arid northwest China[J]. Journal of Arid Environments, 2014, 100-101(1): 31-41. [37] 牛建龙,王家强,彭杰,等. 荒漠-绿洲区潜在蒸散量变化特征及其影响因素[J]. 干旱区研究, 2016, 33(4): 766-772.[Niu Jianlong, Wang Jiaqiang, Peng Jie, et al. Change of potential evapotranspiration and its affecting factors in Desert-oasis Zone[J]. Arid Zone Research, 2016, 33(4): 766-772.] [38] 卓嘎,尼玛央珍,唐小萍. 1980—2009年西藏西北部潜在蒸散时空分布特征及其影响因素[J]. 干旱区研究, 2016, 33(4): 698-707.[Zhuo Ga, Nima Yangzhen, Tang Xiaoping. Spatiotemporal distribution of potential evapotranspiration and its affecting factors in northwest Tibet during the period of 1980-2009[J]. Arid Zone Research, 2016, 33(4): 698-707.] [39] 张娜,金建新,佟长福,等. 西藏参考作物蒸散量时空变化特征与影响因素[J]. 干旱区研究, 2017, 34(5): 1 027-1 034.[Zhang Na, Jin Jianxin, Tong Changfu, et al. Spatiotemporal variation of evapotranspiration of referred crops and the affecting factors in Tibet[J]. Arid Zone Research, 2017, 34(5): 1 027-1 034.] |
[1] | ZHAO Zhuoyi, HAO Xingming. Actual evapotranspiration characteristics and attribution in arid Central Asia based on the Priestley-Taylor method [J]. Arid Zone Research, 2023, 40(7): 1085-1093. |
[2] | ZHUANG Haoran, FENG Kepeng, XU Dehao. Changes, influencing factors and sensitivity of water use efficiency in maize farmland ecosystems based on evapotranspiration separation in the Ningxia irrigated area [J]. Arid Zone Research, 2023, 40(7): 1117-1130. |
[3] | LYU Jinxin, LIANG Kang, LIU Changming, ZHANG Yihui, LIU Lu. Spatial differentiation mechanism of land cover and related changes in water-carbon variables in Wuding River Basin [J]. Arid Zone Research, 2023, 40(4): 563-572. |
[4] | KANG Ligang, CAO Shengkui, CAO Guangchao, YANG Yufan, YAN Li, WANG Youcai. Temporal and spatial changes of evapotranspiration in the Shaliu River Basin of Qinghai Lake [J]. Arid Zone Research, 2023, 40(3): 358-372. |
[5] | DONG Hanlin, WANG Wenting, XIE Yun, Aydana YESINALI, JIANG Yuantian, XU Jiaqi. Climate dry-wet conditions, changes, and their driving factors in Xinjiang [J]. Arid Zone Research, 2023, 40(12): 1875-1884. |
[6] | LIU Yanxue, QIAO Changlu. Study on evapotranspiration of cotton field under drip irrigation in oasis of arid region [J]. Arid Zone Research, 2023, 40(1): 152-162. |
[7] | GAO Xiaoyu,TANG Pengcheng,ZHANG Sha,QU Zhongyi,YANG Wei. Drought characteristics and regression models of drought characteristics and response factors of various climatic areas in Inner Mongolia during main crop growing season [J]. Arid Zone Research, 2022, 39(5): 1410-1427. |
[8] | YAO Jia,CHEN Qihui,LI Qiongfang,CUI Gang,ZHANG Liangjing. Spatial and temporal variability of evapotranspiration and influencing factors in the Ili River-Balkhash Lake Basin [J]. Arid Zone Research, 2022, 39(5): 1564-1575. |
[9] | GAO Bingli,GONG Jie,LI Yan,JIN Tiantian. Analysis of multi-scalar characteristics of dry and wet conditions in the Yellow River Basin based on SPEI [J]. Arid Zone Research, 2022, 39(3): 723-733. |
[10] | ZHAO Xiaohan,ZHANG Fangmin,HAN Dianchen,WENG Shengheng. Evapotranspiration changes and its attribution in semi-arid regions of Inner Mongolia [J]. Arid Zone Research, 2021, 38(6): 1614-1623. |
[11] | FENG Zhuangzhuang,SHI Haibin,MIAO Qingfeng,LI Jiannan,SUN Wei,DAI Liping. Prediction of reference crop evapotranspiration in Xilinguole grassland based on multivariate time series model [J]. Arid Zone Research, 2021, 38(6): 1650-1658. |
[12] | SONG Yuxin,ZUO Qiting,MA Junxia. Variation and dynamic drivers of drought in Kaidu River Basin based on the SWAT model [J]. Arid Zone Research, 2021, 38(3): 610-617. |
[13] | SHI Jiqing,DOU Yongli,YANG Feiyun,DAI Rui,HU Jun. Temporal and spatial pattern characteristics of potential evapotranspiration in Tibet and its influencing factors [J]. Arid Zone Research, 2021, 38(3): 724-732. |
[14] | LI Qing,YANG Pengnian,PENG Liang,ZHOU Long,Yusufujiang Rusuli,WANG Huanbo,ZHANG Wenting. Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data [J]. Arid Zone Research, 2021, 38(2): 351-358. |
[15] | ZHENG Qian-qian, DAI Peng-chao, ZHANG Jin-yan, WU Zhao-peng. Evapotranspiration in the Jinghe River Basin based on the surface energy balance system [J]. Arid Zone Research, 2020, 37(6): 1378-1387. |
|