干旱区研究 ›› 2022, Vol. 39 ›› Issue (1): 165-175.doi: 10.13866/j.azr.2022.01.17
收稿日期:
2021-04-28
修回日期:
2021-06-01
出版日期:
2022-01-15
发布日期:
2022-01-24
通讯作者:
马维伟
作者简介:
宋良翠(1993-),女,硕士研究生,主要从事水土保持研究. E-mail: 基金资助:
SONG Liangcui(),MA Weiwei(),LI Guang,LONG Yongchun,CHANG Wenhua
Received:
2021-04-28
Revised:
2021-06-01
Online:
2022-01-15
Published:
2022-01-24
Contact:
Weiwei MA
摘要:
水分是湿地土壤氮矿化过程的主要调控因子,对于湿地土壤中氮素循环过程具有重要作用。以甘南尕海湿地为研究对象,设置4个退化程度(未退化UD、轻度退化LD、中度退化MD和重度退化HD)和4个田间持水量(20% FC、40% FC、60% FC和80% FC),通过室内49 d的好气培养,测定各处理条件下湿地土壤在0~10 cm土层的土壤氮矿化特征。结果表明:(1) 在各水分条件下,随着培养时间的延长,4种退化程度土壤氨化速率、硝化速率和净氮矿化速率均呈先增大后减小的趋势。(2) 土壤净氮矿化量均值随水分的增加先增大后减小,60% FC条件下,各退化程度土壤净氮矿化量均值变化范围为34.91~44.94 mg·kg-1,较20% FC、40% FC和80% FC分别高出22.31~30.29 mg·kg-1、10.91~19.84 mg·kg-1、8.57~19.50 mg·kg-1。(3) 土壤净氮矿化量均值和净氮矿化速率均值均随湿地退化程度的增加而减小。适宜水分有利于土壤氮矿化,而水分过高不利于土壤氮矿化;同时,湿地退化降低了土壤氮矿化。
宋良翠,马维伟,李广,龙永春,常文华. 水分对尕海湿地退化演替土壤氮矿化的影响[J]. 干旱区研究, 2022, 39(1): 165-175.
SONG Liangcui,MA Weiwei,LI Guang,LONG Yongchun,CHANG Wenhua. Effect of water on nitrogen mineralization in degraded succession of Gahai Wetland[J]. Arid Zone Research, 2022, 39(1): 165-175.
表1
样地基本情况"
退化程度 | 植被盖度/% | 优势种组成 | 生物量/(g·m-2) | 基本情况 |
---|---|---|---|---|
未退化(UD) | 96.25±5.32 | 蕨麻(Potentilla anserina)、散穗早熟禾(Poa subfastigiata) | 355.90±174.64 | 湿地植物是主要物种,其凋落物和根系较多,季节性水较浅,地下水位在20~40 cm。 |
轻度退化(LD) | 86.34±7.36 | 甘肃蒿草(Kobresia kansuensis)、棘豆(Oxytropis) | 293.02±143.93 | 湿地植物是主要的伴生物种。裸露的土壤表面积为5%~10%,无积水。地下水位为40~70 cm。 |
中度退化(MD) | 45.33±13.34 | 问荆(Equisetum arvense)、矮生嵩草(Kobresia humilis) | 185.73±134.90 | 湿地植物是常见的伴生物种或偶发物种,并且会出现一些有毒的杂草。裸露的土壤表面积为10%~30%,无积水。地下水位低于70 cm。 |
重度退化(HD) | <1 | 由于严重退化,只有零星的植被,暴露的表面积超过90% | 严重退化,地表几乎没有植物生长,地表有轻微风蚀。 |
表2
土壤的基本理化性质"
退化程度 | pH | 容重/(g·cm-3) | 有机质/(g·kg-1) | 全氮/(g·kg-1) | 全磷/(g·kg-1) | 全钾/(g·kg-1) |
---|---|---|---|---|---|---|
未退化(UD) | 7.92±0.04 | 0.36±0.01 | 65.82±13.64 | 2.13±1.01 | 1.48±0.51 | 6.03±0.41 |
轻度退化(LD) | 7.79±0.06 | 0.39±0.02 | 65.45±9.67 | 1.88±0.66 | 1.29±0.30 | 6.02±0.44 |
中度退化(MD) | 7.77±0.08 | 0.61±0.05 | 54.39±10.66 | 1.64±0.92 | 1.17±0.08 | 5.74±0.26 |
重度退化(HD) | 7.76±0.06 | 0.56±0.03 | 53.63±10.66 | 1.63±0.63 | 1.15±0.22 | 5.58±0.42 |
表4
湿地退化程度和水分交互作用下氮矿化方差分析"
因变量 | 变异来源 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
氨化速率 | 水分 | 3 | 5.030 | 588.637 | <0.01 |
退化程度 | 3 | 2.807 | 328.521 | <0.01 | |
水分×退化程度 | 9 | 0.188 | 22.035 | <0.01 | |
硝化速率 | 水分 | 3 | 2.086 | 196.784 | <0.01 |
退化程度 | 3 | 0.182 | 17.193 | <0.01 | |
水分×退化程度 | 9 | 0.045 | 4.236 | <0.01 | |
净氮矿化速率 | 水分 | 3 | 3.097 | 80.048 | <0.01 |
退化程度 | 3 | 0.102 | 2.641 | >0.05 | |
水分×退化程度 | 9 | 0.339 | 8.750 | <0.01 | |
净氮矿化量 | 水分 | 3 | 1435.748 | 1120.378 | <0.01 |
退化程度 | 3 | 164.561 | 128.414 | <0.01 | |
水分×退化程度 | 9 | 28.914 | 22.563 | <0.01 |
[1] |
Nacry P, Eléonore Bouguyon, Gojon A. Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource[J]. Plant and Soil, 2013, 370(1-2): 1-29.
doi: 10.1007/s11104-013-1645-9 |
[2] | 任雨佳, 刘夏琳, 王惠玲, 等. 北方农牧交错带赖草草地土壤氮矿化对不同放牧强度的响应[J]. 草地学报, 2020, 28(2): 328-337. |
[Ren Yujia, Liu Xialin, Wang Huiling, et al. Response of soil net Nitrogen mineralization Rates to different grazing intensities in Leymus secalinus communities of the Agro-pastoral Ecotone of Northern China[J]. Acta Grasslanda, 2020, 28(2): 328-337. ] | |
[3] |
Lang M, Cai Z C, Mary B, et al. Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils[J]. Plant and Soil, 2010, 334(1-2): 377-389.
doi: 10.1007/s11104-010-0389-z |
[4] |
Xu Y, Li L, Wang Q, et al. The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe[J]. Plant and Soil, 2007, 300(1-2): 289-300.
doi: 10.1007/s11104-007-9416-0 |
[5] | 杨小红, 董云社, 齐玉春, 等. 锡林河流域羊草草原暗栗钙土矿质氮动态变化[J]. 地理研究, 2005, 24(3): 387-393. |
[Yang Xiaohong, Dong Yunshe, Qi Yuchun, et al. Mineral nitrogen dynamics in dark chestnut soil of Leymus chinensis grassland in the Xilin River Basin, China[J]. Geographical Research, 2005, 24(3): 387-393. ] | |
[6] | 韩大勇, 杨永兴, 杨杨, 等. 放牧干扰下若尔盖高原沼泽湿地植被种类组成及演替模式[J]. 生态学报, 2011, 31(20): 5946-5955. |
[Han Dayong, Yang Yongxing, Yang Yang, et al. Species composition and succession of swamp vegetation along grazing gradients in the Zoige Plateau, China[J]. Acta Ecologica Sinica, 2011, 31(20): 5946-5955. ] | |
[7] | 祁正超, 常佩静, 李永善, 等. 放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响[J]. 干旱区研究, 2021, 38(1): 87-94. |
[Qi Zhengchao, Chang Peijing, Li Yongshan, et al. Effects of grazing intensity on soil aggregates composition, stability, and C/N in desert shrubland[J]. Arid Zone Research, 2021, 38(1): 87-94. ] | |
[8] | 范桥发, 肖德荣, 田昆, 等. 不同放牧对滇西北高原典型湿地土壤碳、氮空间分布的差异影响[J]. 土壤通报, 2014, 45(5): 1151-1156. |
[Fan Qiaofa, Xiao Derong, Tian Kun, et al. Effect of grazing on carbon and nitrogen reserve of typical plateau wetland in Northwestern Yunnan[J]. Soil Bulletin, 2014, 45(5): 1151-1156. ] | |
[9] |
Mou X J, Sun Z G, Wang L L, et al. Nitrogen cycle of a typical Suaeda salsa marsh ecosystem in the Yellow River estuary[J]. Journal of Environmental Sciences, 2011, 23(6): 958-967.
doi: 10.1016/S1001-0742(10)60530-X |
[10] |
Hu R, Wang X P, Pan Y X, et al. The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions[J]. European Journal of Soil Biology, 2014, 62(66-73): 66-73.
doi: 10.1016/j.ejsobi.2014.02.008 |
[11] | 田冬, 高明, 徐畅. 土壤水分和氮添加对3种质地紫色土氮矿化及土壤pH的影响[J]. 水土保持学报, 2016, 30(1): 255-261. |
[Tian Dong, Gao Ming, Xu Chang. Effects of soil moisture and nitrogen addition on nitrogen mineralization and soil pH in purple soil of three different textures[J]. Journal of Soil and Water Conservation, 2016, 30(1): 255-261. ] | |
[12] |
Stanford G, Smith S J. Nitrogen mineralization potentials of soils[J]. Soil Science Society of America Journal, 1972, 36: 465-472.
doi: 10.2136/sssaj1972.03615995003600030029x |
[13] | 马维伟, 王跃思, 李广, 等. 尕海湿地植被退化过程中植被——土壤系统有机碳储量变化特征[J]. 应用生态学报, 2018, 29(12): 3900-3906. |
[Ma Weiwei, Wang Yuesi, Li Guang, et al. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai Wetland, China[J]. Chinese Journal of Applied Ecology, 2018, 29(12): 3900-3906. ] | |
[14] | 马维伟, 王辉, 李广, 等. 甘南尕海湿地退化过程中植被生物量变化及其季节动态[J]. 生态学报, 2017, 37(15): 5091-5101. |
[Ma Weiwei, Wang Hui, Li Guang, et al. Changes in plant biomass and its seasonal dynamics during degradation succession in the Gahai Wetland[J]. Acta Ecologica Sinica, 2017, 37(15): 5091-5101. ] | |
[15] | 隽英华, 田路路, 刘艳, 等. 农田黑土氮素转化特征对冻融作用的响应[J]. 中国土壤与肥料, 2019, 56(6): 38-43. |
[Juan Yinghua, Tian Lulu, Liu Yan, et al. Response of nitrogen transformation characteristics to freezing thawing cycles in the farmland black soil[J]. Soil and Fertilizer Sciences in China, 2019, 56(6): 38-43. ] | |
[16] | 李平, 郎漫, 魏玮. 不同施氮量对林地和农田黑土净氮转化速率的影响[J]. 土壤通报, 2020, 51(3): 694-701. |
[Li Ping, Lang Man, Wei Wei. Effects of nitrogen application amounts on net nitrogen transformation rates in forest and agricultural black soils[J]. Chinese Journal of Soil Science, 2020, 51(3): 694-701. ] | |
[17] | 胡仲豪, 常顺利, 张毓涛, 等. 天山林区不同类型群落土壤氮素对冻融过程的动态响应[J]. 生态学报, 2019, 39(2): 571-579. |
[Hu Zhonghao, Chang Shunli, Zhang Yutao, et al. Dynamic response of soil nitrogen to freeze-thaw processes in different cenotypes in the forests of the Tianshan Mountains[J]. Acta Ecologica Sinica, 2019, 39(2): 571-579. ] | |
[18] | 孔涛, 张莹, 雷泽勇, 等. 沙地樟子松人工林土壤氮矿化特征[J]. 干旱区研究, 2019, 36(2): 296-306. |
[Kong Tao, Zhang Ying, Lei Zeyong, et al. Soil nitrogen mineralization under Pinus sylvestris var. mongolica plantation on sandy soil[J]. Arid Zone Research, 2019, 36(2): 296-306. ] | |
[19] |
李阳, 徐小惠, 孙伟, 等. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响[J]. 植物生态学报, 2019, 43(2): 174-184.
doi: 10.17521/cjpe.2018.0245 |
[Li Yang, Xu Xiaohui, Sun Wei, et al. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2019, 43(2): 174-184. ]
doi: 10.17521/cjpe.2018.0245 |
|
[20] |
朱志成, 黄银, 许丰伟, 等. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952.
doi: 10.17521/cjpe.2017.0056 |
[Zhu Zhicheng, Huang Yin, Xu Fengwei, et al. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Inner Mongolia grassland[J]. Chinese Journal of Plant Ecology, 2017, 41(9): 938-952. ]
doi: 10.17521/cjpe.2017.0056 |
|
[21] | 赵琦齐, 沈玉娟, 李平, 等. 温度对太湖湖滨带不同水分梯度土壤氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(6): 147-150. |
[Zhao Qiqi, Shen Yujuan, Li Ping, et al. Responses of soil nitrogen mineralization to temperature along soil moisture gradients in the riparian zone of Taihu Lake[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2011, 35(6): 147-150. ] | |
[22] |
Weiwei M, Alhassan A M, Yuesi W, et al. Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China[J]. Nutrient Cycling in Agroecosystems, 2018, 112: 335-354.
doi: 10.1007/s10705-018-9950-6 |
[23] | 徐国荣, 马维伟, 宋良翠, 等. 植被不同退化状态下尕海湿地土壤氮含量及酶活性特征[J]. 生态学报, 2020, 40(24): 8917-8927. |
[Xu Guorong, Ma Weiwei, Song Liangcui, et al. Characteristics of soil nitrogen content and enzyme activity in Gahai Wetland under different vegetation degradation conditions[J]. Acta Ecologica Sinica, 2020, 40(24): 8917-8927. ] | |
[24] | 王士超, 陈竹君, 周建斌, 等. 水分对不同栽培年限日光温室土壤氮矿化的影响[J]. 干旱地区农业研究, 2019, 37(4): 124-131. |
[Wang Shichao, Chen Zhujun, Zhou Jianbin, et al. Effects of moisture on nitrogen mineralization in soils under solar greenhouses in different cultivation years[J]. Agricultural Research in the Arid Areas, 2019, 37(4): 124-131. ] | |
[25] | 雷文琪, 张自翔, 张红梅, 等. 氯化钾和氯化钠浸提对比检测土壤中铵态氮的研究[J]. 南方农机, 2019, 50(1): 43-65. |
[Lei Wenqi, Zhang Zixiang, Zhang Hongmei, et al. Comparative research on determination of ammonium nitrogen in soil which extracted by potassium chloride and sodium chloride[J]. China Southern Agricultural Machinery, 2019, 50(1): 43-65. ] | |
[26] | 李银坤, 陈敏鹏, 梅旭荣, 等. 土壤水分和氮添加对华北平原高产农田有机碳矿化的影响[J]. 生态学报, 2014, 34(14): 4037-4046. |
[Li Yinkun, Chen Minpeng, Mei Xurong, et al. Effects of soil moisture and nitrogen addition on organic carbon mineralization in a high-yield cropland soil of the North China Plain[J]. Acta Ecologica Sinica, 2014, 34(14): 4037-4046. ] | |
[27] |
Agehara S, Warncke D D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources[J]. Soil Science Society of America Journal, 2005, 69(6): 1844-1855.
doi: 10.2136/sssaj2004.0361 |
[28] | 桂慧颖, 李雪江, 王景燕, 等. 温度和水分对华西雨屏区毛竹林土壤氮矿化的影响[J]. 四川农业大学学报, 2018, 36(6): 758-764. |
[Gui Huiying, Li Xuejiang, Wang Jingyan, et al. Effects of temperature and moisture on soil nitrogen mineralization of phyllostachys heterocycla plantation in the rainy area of western China[J]. Journal of Sichuan Agricultural University, 2018, 36(6): 758-764. ] | |
[29] |
Bernal S, Sabater F, Butturini A, et al. Factors limiting denitrification in a Mediterranean riparian forest[J]. Soil Biology and Biochemistry, 2007, 39(10): 2685-2688.
doi: 10.1016/j.soilbio.2007.04.027 |
[30] |
Roux X, Bardy M, Loiseau P, et al. Stimulation of soil nitrification and denitrification by grazing in grasslands: Do changes in plant species composition matter?[J]. Oecologia, 2003, 137(3): 417-425.
pmid: 12955489 |
[31] | 王芳芳, 徐欢, 李婷, 等. 放牧对草地土壤氮素循环关键过程的影响与机制研究进展[J]. 应用生态学报, 2019, 30(10): 3277-3284. |
[Wang Fangfang, Xu Huan, Li Ting, et al. Effects and mechanisms of grazing on key processes of soil nitrogen cycling in grassland: A review[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3277-3284. ] | |
[32] |
Liu T Z, Nan Z B, Hou F J. Grazing intensity effects on soil nitrogen mineralization in semi-arid grassland on the Loess Plateau of northern China[J]. Nutrient Cycling in Agroecosystems, 2011, 91(1): 67-75.
doi: 10.1007/s10705-011-9445-1 |
[33] | Chen D D, Sun D S, Zhang S H, et al. Soil N mineralization of an alpine meadow in eastern Qinghai-Tibetan Plateau[J]. Acta Agrestia Sinica, 2011, 19(3): 420-424. |
[34] |
Xu Y Q, Li L H, Wang Q B, et al. The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe[J]. Plant and Soil, 2007, 300(1-2): 289-300.
doi: 10.1007/s11104-007-9416-0 |
[35] | 马维伟, 孔同伟, 宋元君, 等. 尕海湿地植被退化过程中土壤有机碳矿化特征[J]. 水土保持学报, 2020, 34(3): 342-348. |
[Ma Weiwei, Kong Tongwei, Song Yuanjun, et al. Characteristics of soil organic carbon mineralization during vegetation degradation in the Gahai Wetland, China[J]. Journal of Soil and Water Conservation, 2020, 34(3): 342-348. ] | |
[36] | 马丽娜, 王喜明, 代万安, 等. 西藏高原日光温室菜地土壤碳、氮矿化特征研究[J]. 中国生态农业学报, 2013, 21(11): 1340-1349. |
[Ma Lina, Wang Ximing, Dai Wan’an, et al. Comparative analysis of carbon and nitrogen mineralization in soils under alpine meadow, farmland and greenhouse conditions in Tibet[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1340-1349. ] | |
[37] |
Khalil M I, Hossain M B, Schimidhalter U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials[J]. Soil Biology and Biochemistry, 2005, 37(8): 1507-1518.
doi: 10.1016/j.soilbio.2005.01.014 |
[38] | 王雪, 郭雪莲, 郑荣波, 等. 放牧对滇西北高原纳帕海沼泽化草甸湿地土壤氮转化的影响[J]. 生态学报, 2018, 38(7): 2308-2314. |
[Wang Xue, Guo Xuelian, Zheng Rongbo, et al. Effects of grazing on nitrogen transformation in swamp meadow wetland soils in Napahai of Northwest Yunnan[J]. Acta Ecologica Sinica, 2018, 38(7): 2308-2314. ] |
[1] | 范明彦, 田丽慧, 周海. 微地形对高寒固沙植物水分利用特征的影响[J]. 干旱区研究, 2024, 41(1): 60-70. |
[2] | 庞晔,袁建钰,闫丽娟,杜梦寅,李广. 保护性耕作对黄土高原旱作麦田土壤氮矿化的影响[J]. 干旱区研究, 2023, 40(9): 1446-1456. |
[3] | 李健男, 史海滨, 苗庆丰, 珊丹, 荣浩, 温雅琴. 环境因子对不同种类人工乔木林分蒸腾耗水的影响[J]. 干旱区研究, 2023, 40(8): 1312-1321. |
[4] | 吉吉佳门, 程一本, 谌玲珑, 万鹏翔, 张祎晖, 杨文斌, 白旭赢, 王涛. 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023, 40(5): 756-766. |
[5] | 吕锦心, 梁康, 刘昌明, 张仪辉, 刘璐. 无定河流域土地覆被空间分异机制及相关水碳变量变化[J]. 干旱区研究, 2023, 40(4): 563-572. |
[6] | 薛智暄, 张丽, 王新军, 李永康, 张冠宏, 李沛尧. 古尔班通古特沙漠SMAP土壤水分产品降尺度分析[J]. 干旱区研究, 2023, 40(4): 583-593. |
[7] | 石建周, 刘贤德, 田青, 于澎涛, 王彦辉. 六盘山半干旱区华北落叶松林坡面土壤含水量的降雨响应[J]. 干旱区研究, 2023, 40(4): 594-604. |
[8] | 田胜川, 赵善超, 郑新军, 王玉刚, 李彦. 天山不同海拔雪岭云杉生长季水分来源[J]. 干旱区研究, 2023, 40(3): 436-444. |
[9] | 李红梅, 巴贺贾依娜尔·铁木尔别克, 常顺利, 古丽哈娜提·波拉提别克, 张毓涛, 李吉枚. MixSIAR和IsoSource模型对比分析天山北坡不同灌木的夏季水分来源[J]. 干旱区研究, 2023, 40(3): 445-455. |
[10] | 杨霜奇, 宋乃平, 王兴, 陈晓莹, 常道琴. 荒漠草原灰钙土与风沙土水分时空特征[J]. 干旱区研究, 2023, 40(10): 1625-1636. |
[11] | 杨慧,张泽,张兰,闫兴富. 柠条种子萌发对不同温度和土壤含水量的响应[J]. 干旱区研究, 2022, 39(6): 1875-1884. |
[12] | 高洁,赵勇,姚俊强,迪丽努尔·托列吾别克,王梦园. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[13] | 李泽厚,李蕊希,张舒斌,王崇斌,郑明明,董叶卿,吴雪. 多枝柽柳叶片结构和化学性状对土壤水分变化的响应[J]. 干旱区研究, 2022, 39(5): 1486-1495. |
[14] | 袁立敏,杨制国,薛博,高海燕,韩照日格图. 呼伦贝尔草原风蚀坑土壤水分异质效应研究[J]. 干旱区研究, 2022, 39(5): 1598-1606. |
[15] | 申志博,韩耀光,王家力,陈康怡,胡洋,朱新萍,贾宏涛. 氮沉降促进西北干旱区高寒湿地生态系统N2O排放[J]. 干旱区研究, 2022, 39(5): 1655-1662. |
|