干旱区研究 ›› 2025, Vol. 42 ›› Issue (11): 2117-2126.doi: 10.13866/j.azr.2025.11.14
收稿日期:2025-04-07
修回日期:2025-05-31
出版日期:2025-11-15
发布日期:2025-12-13
通讯作者:
张博越. E-mail: rybzhk@163.com作者简介:张玉欣(1993-),女,工程师,主要从事大气物理研究. E-mail: nuistzyx@126.com
基金资助:
ZHANG Yuxin1(
), ZHANG Boyue2(
), HOU Yonghui2, KANG Xiaoyan1
Received:2025-04-07
Revised:2025-05-31
Published:2025-11-15
Online:2025-12-13
摘要: 利用2020年5月18—22日5次飞机机载观测数据,对青藏高原东北部大气气溶胶的颗粒物粒径分布和浓度垂直差异进行分析,构建背景气溶胶谱特征。结果表明:(1) 研究区域中分散云系自西向东移动,云顶高度(Cloud Top Height,CTH)在8000~10000 m之间。后向轨迹表明6000~7000 m主要受周边环境传输影响,高空气溶胶粒子与远距离大气传输相关,来自青藏高原边缘。(2) 大气气溶胶平均有效直径(re)为0.68 μm,平均浓度(Na)为102~103 cm-3。气溶胶谱型为多峰型。(3) 气溶胶分为3种模态,Mode I的Na为102 cm-3,Mode II的Na为101 cm-3,Mode III的Na为10-1~100 cm-3。Na随高度升高而降低,随着温度(T)的下降而下降,Na与T呈显著正相关。随相对湿度(RH)的升高,气溶胶谱型不变,但气溶胶粒子数(dNa)和粒子直径(D)的比值(dNa/dD)逐渐上升。(4) 云滴离散度(ε)表征云滴大小的不均匀性,7000~8000 m时ε值较高在0.4左右,该高度处云滴尺度变化最显著。文中对ε-Na进行了线性拟合和幂指数拟合,两种拟合均表明ε-Na为负相关关系。
张玉欣, 张博越, 侯永慧, 康晓燕. 青藏高原大气气溶胶垂直分布的飞机观测[J]. 干旱区研究, 2025, 42(11): 2117-2126.
ZHANG Yuxin, ZHANG Boyue, HOU Yonghui, KANG Xiaoyan. Airborne observation of the vertical distribution of atmospheric aerosols over the Qinghai-Xizang Plateau[J]. Arid Zone Research, 2025, 42(11): 2117-2126.
表1
2020年5月18—22日飞行探测概况"
| 编号 | 日期/年-月-日 | 飞机起降时间 (北京时) | 天气状况 | 高度 /m | 样本数 /个 | T/°C | RH/% |
|---|---|---|---|---|---|---|---|
| B1 | 2020-05-18 | 13:41—15:26 | 晴 | 2129~7792 | 5554 | -27.84~21.29 | 20~99 |
| B2 | 2020-05-19 | 16:27—18:22 | 多云 | 2126~7772 | 6945 | -22.30~10.67 | 32~94 |
| B3 | 2020-05-20 | 12:20—15:40 | 晴 | 2928~7808 | 11961 | -24.10~19.16 | 1~100 |
| B4 | 2020-05-21 | 08:43—10:35 | 多云 | 2116~7823 | 4727 | -21.74~13.09 | 30~80 |
| B5 | 2020-05-22 | 08:22—10:50 | 晴 | 2116~7834 | 7957 | -30.82~12.31 | 34~87 |
| [1] |
Campbell J R, Reid J S, Westphal D, et al. Characterizing the vertical profile of aerosol particle extinction and linear depolarization over southeast asia and the maritime continent: The 2007-2009 view from caliop[J]. Atmospheric Research, 2013, 122(5): 520-543.
doi: 10.1016/j.atmosres.2012.05.007 |
| [2] |
Ma X Y, Yu F Q. Seasonal variability of aerosol vertical profiles over East US and West Europe: GEOS-Chem/APM simulation and comparison with CALIPSO observations[J]. Atmospheric Research, 2014, 140-141: 28-37.
doi: 10.1016/j.atmosres.2014.01.001 |
| [3] | 辛金元, 吴肖燕, 张文煜, 等. 中美大陆区域气溶胶成分消光贡献研究综述[J]. 大气科学, 2024, 48(1): 273-286. |
| [ Xin Jinyuan, Wu Xiaoyan, Zhang Wenyu, et al. A review on the extinction contribution of aerosol components in the United States[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(1): 273-286. ] | |
| [4] |
Hudson J G, Noble S. CCN and vertical velocity influences on droplet concentrations and super saturations in clean and polluted stratus clouds[J]. Journal of the Atmospheric Sciences, 2014, 71(1): 312-331
doi: 10.1175/JAS-D-13-086.1 |
| [5] |
Aberson S D, Black M L, Black R A, et al. Thirty years of tropical cyclone research with the NOAA P-3 aircraft[J]. Bulletin of the American Meteorological Society, 2006, 87(8): 1039-1056.
doi: 10.1175/BAMS-87-8-1039 |
| [6] | Kulmala M, Maso M D, Mäkelä J M, et al. On the formation, growth and composition of nucleation mode particles[J]. Tellus B: Chemical and Physical Meteorology, 2001, 53(B): 479-490. |
| [7] |
Andreae M O, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols[J]. Earth-Science Reviews, 2008, 89(1-2): 13-41.
doi: 10.1016/j.earscirev.2008.03.001 |
| [8] | Mcfiggans G, Artaxo P, Baltensperger U, et al. The effect of physical and chemical aerosol properties on warm cloud droplet activation[J]. Atmospheric Chemistry and Physics, 2006, 6(9): 2593-2649. |
| [9] | 郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展[J]. 应用气象学报, 2021, 32(6): 641-652. |
| [ Guo Xueliang, Fu Danhong, Guo Xin, et al. Advances in aircraft measurements of clouds and precipitation in China[J]. Journal of Applied Meteorology and Climatology, 2021, 32(6): 641-652. ] | |
| [10] | Maring H, Savioe D L, Izaguirre M A, et al. Vertical distributions of dust and sea-salt aerosols over Puerto Rico during PRIDE measured from a light aircraft[J]. Geophysical Research Letters, 2003, 108(D19): 8587. |
| [11] |
Fuelberg H E, VanAusdall J D, Browell E V, et al. Meteorological conditions associated with vertical distributions of aerosols off the west coast of Africa[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D19): 24105-24115.
doi: 10.1029/95JD02889 |
| [12] |
Zhang Q, Ma X C, Tie X X, et al. Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements in Beijing, China[J]. Atmospheric Environment, 2009, 43(34): 5526-5535.
doi: 10.1016/j.atmosenv.2009.05.037 |
| [13] |
Birmili W, Wiedensohler A, Heintzenberg J, et al. Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D23): 32005-32018.
doi: 10.1029/2000JD000220 |
| [14] | Wang F, Li Z Q, Ren X R, et al. Vertical distributions of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the North China Plain[J]. Atmospheric Chemistry and Physics Discussions, 2018, 18(12): 1-22. |
| [15] |
付双喜, 亓鹏, 常祎, 等. 祁连山中部一次层状云降水云微物理特征的飞机观测研究[J]. 干旱区研究, 2025, 42(2): 212-222.
doi: 10.13866/j.azr.2025.02.03 |
|
[ Fu Shuangxi, Qi Peng, Chang Yi, et al. Aircraft observation of the cloud microphysical characteristics of stratocumulus precipitation in the Qilian Mountains[J]. Arid Zone Research, 2025, 42(2): 212-222. ]
doi: 10.13866/j.azr.2025.02.03 |
|
| [16] |
Chang Y, Guo X L, Tang J, et al. Aircraft measurement campaign on summer cloud microphysical properties over the Tibetan Plateau[J]. Scientific Reports, 2019, 9(1): 4921.
doi: 10.1038/s41598-019-41381-0 |
| [17] |
Li Y N, Zhang F, Li Z Q, et al. Influences of aerosol physio-chemical properties and new particle formation on CCN activity from observation at a suburban site of China[J]. Atmospheric Research, 2017, 188: 80-89.
doi: 10.1016/j.atmosres.2017.01.009 |
| [18] | 马新成, 毕凯, 王飞, 等. 沙尘暴天气下云的飞机观测研究[J]. 应用气象学报, 2024, 35(3): 323-336. |
| [ Ma Xincheng, Bi Kai, Wang Fei, et al. Cloud observation by aircraft during dust storms[J]. Journal of Applied Meteorological Science, 2024, 35(3): 323-336. ] | |
| [19] |
刘庆芳, 谢佳亮, 张先甜, 等. 青藏高原县域尺度PM2.5浓度时空动态演进特征[J]. 地理学报, 2024, 79(3): 654-671.
doi: 10.11821/dlxb202403007 |
|
[ Liu Qingfang, Xie Jialiang, Zhang Xiantian, et al. Spatio-temporal dynamic evolution of PM2.5 concentrations in the Qinghai-Xizang Plateau ba- sed on county scale[J]. Acta Geographica Sinica, 2024, 79(3): 654-671. ]
doi: 10.11821/dlxb202403007 |
|
| [20] | Feng S, Fu Y F, Xiao Q N. Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data[J]. Journal of Geophysical Research Atmospheres, 2011, 116(1): D21121. |
| [21] | Sugimoto S, Ueno K. Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts[J]. Journal of Geophysical Research Atmospheres, 20010, 115: D16105. |
| [22] | 马学谦, 郭学良, 刘娜, 等. 青藏高原中东部气溶胶特征的飞机观测[J]. 应用气象学报, 2021, 32(6): 706-719. |
| [ Ma Xueqian, Guo Xueliang, Liu Na, et al. Aircraft measurements on properties of aerosols over the central and eastern Qinghai-Xizang Plateau[J]. Journal of Applied Meteorological Science, 2021, 32(6): 706-719. ] | |
| [23] | 王启花, 张鹏亮, 王丽霞, 等. 青海格尔木地区大气气溶胶分布的飞机观测[J]. 干旱气象, 2021, 39(4): 603-609. |
| [ Wang Qihua, Zhang Pengliang, Wang Lixia, et al. Aircraft measurements of distribution of aerosol over Golmud in Qinghai Province[J]. Journal of Arid Meteorology, 2021, 39(4): 603-609. ] | |
| [24] |
Yan Y F, Liu Y M, Lu J H. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(10): 5864-5877.
doi: 10.1002/jgrd.v121.10 |
| [25] |
Huang J, Wang Y, Wang T, et al. Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia[J]. Progress in Natural Science, 2006, 16(10): 1084-1089.
doi: 10.1080/10020070612330114 |
| [26] | 张屹, 陆春松, 张胜龙, 等. 层积云与积云中的微物理特征及其影响因子[J]. 暴雨灾害, 2021, 40(3): 297-305. |
| [ Zhang Yi, Lu Chunsong, Zhang Shenglong, et al. Stratocumulus and cumulus microphysics and the influencing factors[J]. Torrential Rain and Disasters, 2021, 40(3): 297-305. ] | |
| [27] |
Willeke K, Whitby K T. Atmospheric aerosol: Size distribution interpetration[J]. Journal of the Air Pollution Control Association, 1975, 25(5): 529-534.
doi: 10.1080/00022470.1975.10470110 |
| [28] |
Matthias-Maser S, Jaenicke R. The size distribution of primary biological aerosol particles with radii > 0.2 μm in an urban/rural influenced region-science direct[J]. Atmospheric Research, 1995, 39(4): 279-286.
doi: 10.1016/0169-8095(95)00017-8 |
| [29] |
Bessho K, Date K, Hayashi M, et al. An introduction to Himawari-8/9-Japan’s new-generation geostationary meteorological satellites[J]. Journal of the Meteorological Society of Japan, 2016, 94(2): 151-183.
doi: 10.2151/jmsj.2016-009 |
| [30] |
Nakajima T Y, Nakajma T. Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions[J]. Journal of the Atmospheric Sciences, 1995, 52(23): 4043-4059.
doi: 10.1175/1520-0469(1995)052<4043:WADOCM>2.0.CO;2 |
| [31] |
Kawamoto K, Nakajima T, Nakajima T Y. A global determination of cloud microphysics with AVHRR remote sensing[J]. Journal of Climate, 2001, 14(9): 2054-2068.
doi: 10.1175/1520-0442(2001)014<2054:AGDOCM>2.0.CO;2 |
| [32] | Letu H, Nagao T M, Nakajima T Y, et al. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process[J]. Geoscience and Remote Sensing Magazine, 2019, 57(6): 3229-3239. |
| [33] | Draxler R R, Hess G D. An overview of the HYSPLIT 4 modeling system for trajectories, dispersion, and deposition[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308. |
| [34] | Chen J, Wu Z J, Wu G M, et al. Ice-nucleating particle concentration sand sources in rainwater over the third pole, Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(9): e2020JD033864. |
| [35] | 程楠, 黄鹤, 张文煜, 等. 边界层高度的不同诊断方法在京津冀及周边地区的适用性分析[J]. 气候与环境研究, 2024, 29(1): 1-12. |
| [ Cheng Nan, Huang He, Zhang Wenyu, et al. Applicability analysis of different diagnostic methods for boundary layer height in Beijing-Tianjing-Hebei region and its surrounding areas[J]. Climatic and Environmental Research, 2024, 29(1): 1-12. ] | |
| [36] |
Duan J, Chen Y, Guo X L. Characteristics of aerosol activation eficiency and aerosol and CCN vertical distributions in North China[J]. Acta Meteorologica Sinica, 2012, 26(5): 579-596.
doi: 10.1007/s13351-012-0504-6 |
| [37] |
Liu P F, Zhao C S, Liu P F, et al. Aircraft study of aerosol vertical distributions over Beijing and their optical properies[J]. Tellus B: Chemical and Physical Meteorology, 2009, 61(5): 756-767.
doi: 10.1111/j.1600-0889.2009.00440.x |
| [38] |
Yang J F, Lei H C, Li Y H. Airborne observations of cloud condensation nuclei spectra and aerosols over East Inner Mongolia[J]. Advances in Atmospheric Sciences, 2017, 34(8): 1003-1016.
doi: 10.1007/s00376-017-6219-y |
| [39] |
Sun X, Yan Y, Sun Y W, et al. Seasonal and vertical variations in aerosol distribution over Shijiazhuang, China[J]. Atmospheric Environment, 2013, 81: 245-252.
doi: 10.1016/j.atmosenv.2013.08.009 |
| [40] | Shen X J, Sun J Y, Zhang, Y M, et al. First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain[J]. Atmospheric Chemistry Physics, 2011, 10: 1565-1580. |
| [41] |
Li J X, Yin Y, Li P R, et al. Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China[J]. Atmospheric Research, 2015, 155(3): 73-86.
doi: 10.1016/j.atmosres.2014.12.004 |
| [42] |
Zhang Q, Quan J N, Tie X X, et al. Impact of aerosol particles on cloud formation: Aircraft measurements in China[J]. Atmospheric Environment, 2011, 45(3): 665-672.
doi: 10.1016/j.atmosenv.2010.10.025 |
| [43] |
王飞, 陆春松. 云滴谱离散度的理论、观测和数值模拟研究进展[J]. 高原气象, 2023, 42(4): 809-820.
doi: 10.7522/j.issn.1000-0534.2022.00067 |
| [ Wang Fei, Lu Chunsong. Advances of theoretical, observational, and numerical studies on relative dispersion of cloud droplet spectraf[J]. Plateau Meteorology, 2023, 42(4): 809-820. ] | |
| [44] | Zhao C S, Tie X X, Brasseur G, et al. Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing[J]. Geophysical Research Letters, 2006, 33: L16809. |
| [45] |
Wang X F, Xue H W, Fang W, et al. A study of shallow cumulus cloud droplet dispersion by large eddy simulations[J]. Acta Meteorologica Sinica, 2011, 25(2): 166-175.
doi: 10.1007/s13351-011-0024-9 |
| [1] | 李漠雨, 董少睿, 郭英香. 青藏高原东部三种降水数据产品的适用性评估[J]. 干旱区研究, 2025, 42(7): 1173-1183. |
| [2] | 田文君, 薛一波, 张小啸, 雷加强, 李生宇, 范敬龙, 张恒. 2021年春季塔里木盆地典型沙尘天气过程气溶胶垂直分布及传输[J]. 干旱区研究, 2025, 42(1): 14-26. |
| [3] | 叶虎, 裴浩, 姜艳丰, 那庆, 张立伟. 内蒙古半干旱区气溶胶散射特性及影响因素[J]. 干旱区研究, 2024, 41(5): 730-741. |
| [4] | 郭世钰, 张玉欣, 韩辉邦, 周万福, 康晓燕, 张莉燕. 三江源一次降水过程雨滴谱垂直演变特征[J]. 干旱区研究, 2024, 41(3): 353-362. |
| [5] | 王雪莹, 谷黄河, 代斌, 张瀚文, 余钟波. 不同水平分辨率区域气候模式对青藏高原气候特征模拟[J]. 干旱区研究, 2024, 41(3): 363-374. |
| [6] | 康国强, 马敏劲, 曹译丹, 陈然. 2013—2023年兰州山谷持续性冷池空气污染特征[J]. 干旱区研究, 2024, 41(3): 375-386. |
| [7] | 许宁, 李治国, 梁雪悦, 周晓莹. 基于地形梯度的青藏高原冰川分布格局及成因[J]. 干旱区研究, 2024, 41(2): 230-239. |
| [8] | 其美拉姆, 郑诚, 袁浏欢, 吴沛桐, 谭凯, 申乔天, 史海静. 青藏高原植被光能利用效率时空变化[J]. 干旱区研究, 2024, 41(10): 1731-1739. |
| [9] | 申红艳, 温婷婷, 赵仙荣, 冯晓莉. 基于多模式的青藏高原前冬降水预测性能评估[J]. 干旱区研究, 2023, 40(7): 1027-1039. |
| [10] | 关宇淇, 李广, 潘雪, 徐国荣, 魏星星, 刘昊, 吴江琪. 降雨频率对甘南尕海湿草甸土壤碳氮磷化学计量特征的影响[J]. 干旱区研究, 2023, 40(6): 916-925. |
| [11] | 王鹏, 秦思彤, 胡慧蓉. 近30 a拉萨河流域土地利用变化和生境质量的时空演变特征[J]. 干旱区研究, 2023, 40(3): 492-503. |
| [12] | 朱从祯,赵天良,孟露,杨兴华,何清,买买提艾力·买买提依明,杨婕,朱燕,吴昭烨. 浮尘气溶胶对沙漠大气边界层结构作用的昼夜差异[J]. 干旱区研究, 2022, 39(4): 1017-1026. |
| [13] | 温婷婷,郭英香,董少睿,东元祯,来晓玲. 1979—2017年CRU、ERA5、CMFD格点降水数据在青藏高原适用性评估[J]. 干旱区研究, 2022, 39(3): 684-697. |
| [14] | 张君霞,孔祥伟,刘新伟,王勇. 青藏高原东北侧暴雨数值模式预报空间误差特征[J]. 干旱区研究, 2022, 39(1): 64-74. |
| [15] | 席文涛,高晶. 基于地理探测器分析青藏高原降水δ18O空间分异特征[J]. 干旱区研究, 2021, 38(5): 1199-1206. |
|
||