干旱区研究 ›› 2025, Vol. 42 ›› Issue (7): 1173-1183.doi: 10.13866/j.azr.2025.07.02 cstr: 32277.14.AZR.20250702
收稿日期:2024-11-14
修回日期:2025-04-18
出版日期:2025-07-15
发布日期:2025-07-07
通讯作者:
董少睿. E-mail: 1426547030@qq.com作者简介:李漠雨(1999-),女,助理工程师,主要从事气候监测评估研究. E-mail: limoyu1999@163.com
基金资助:
LI Moyu(
), DONG Shaorui(
), GUO Yingxiang
Received:2024-11-14
Revised:2025-04-18
Published:2025-07-15
Online:2025-07-07
摘要: 选取2022年青藏高原东部地面气象站逐日降水数据,对中国区域融合降水分析系统CMPAS(China Meteorological Administration Multi-source Precipitation Analysis System)、中国气象局陆面数据同化系统CLDAS(China Meteorological Administration Land Data Assimilation System)、中国第一代全球陆面再分析产品CRA(China Meteorological Administration’s Global Atmospheric Reanalysis)的降水资料进行评估,采用误差指标和分级评估法,分区域检验三种降水产品在青藏高原东部的适用性。结果表明:(1) 对青藏高原东部而言,在分析年尺度降水时,CMPAS降水与观测误差最小、相关性最强、明显优于另外两种资料。应优先选用CMPAS降水产品。(2) 从年内变化来看,CMPAS各月降水量与观测最为接近、误差小、相关性高,CRA各月降水量较观测均偏多,CLDAS多数月份较观测明显偏少。在分析青藏高原东部月尺度降水时,CMPAS效果最好。(3) 青藏高原东部两次大范围降水过程中,CLDAS对过程累积雨量的反应最为准确,CMPAS能准确反应最大降水中心、最大降水中心雨量、小到大雨等级降水、降水集中出现时间及落区。在分析青藏高原东部降水过程时,CMPAS效果最佳。研究结果为青藏高原东部站点稀疏区的精细化监测提供数据支撑,为网格降水产品在天气气候业务、气象防灾减灾中的应用打下坚实基础。
李漠雨, 董少睿, 郭英香. 青藏高原东部三种降水数据产品的适用性评估[J]. 干旱区研究, 2025, 42(7): 1173-1183.
LI Moyu, DONG Shaorui, GUO Yingxiang. Applicability evaluation of three kinds of precipitation products in eastern Qinghai-Xizang Plateau[J]. Arid Zone Research, 2025, 42(7): 1173-1183.
表2
2022年青藏高原东部三种降水产品各月评估指标"
| 月份 | CRA | CMPAS | CLDAS | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ME | MAE | RMSE | COR | ME | MAE | RMSE | COR | ME | MAE | RMSE | COR | |
| 1 | 0.064 | 0.070 | 0.129 | 87.810%**** | 0.005 | 0.007 | 0.011 | 99.697%**** | -0.026 | 0.042 | 0.082 | 61.099%**** |
| 2 | 0.109 | 0.187 | 0.338 | 64.134%**** | 0.011 | 0.013 | 0.020 | 99.932%**** | -0.076 | 0.132 | 0.289 | 33.024%* |
| 3 | 0.126 | 0.141 | 0.331 | 62.453%**** | 0.012 | 0.013 | 0.039 | 98.779%**** | -0.013 | 0.087 | 0.178 | 62.429%**** |
| 4 | 0.395 | 0.565 | 1.103 | 78.049%**** | 0.017 | 0.034 | 0.063 | 99.832%**** | -0.312 | 0.545 | 1.006 | 26.942% |
| 5 | 0.399 | 0.780 | 1.231 | 75.362%**** | 0.022 | 0.037 | 0.048 | 99.948%**** | -0.231 | 0.634 | 1.144 | 56.741%**** |
| 6 | 0.495 | 1.047 | 1.530 | 72.216%**** | 0.059 | 0.068 | 0.092 | 99.943%**** | -0.146 | 1.320 | 1.708 | 61.704%**** |
| 7 | 0.591 | 0.994 | 1.501 | 85.055%**** | 0.160 | 0.201 | 0.458 | 98.641%**** | -0.361 | 1.173 | 1.721 | 76.322%**** |
| 8 | 0.868 | 2.310 | 3.217 | 47.093%*** | 0.078 | 0.217 | 0.399 | 99.012%**** | -0.685 | 2.294 | 3.289 | 35.563%** |
| 9 | 0.338 | 0.838 | 1.387 | 77.625%**** | 0.088 | 0.088 | 0.122 | 99.934%**** | -0.093 | 1.250 | 1.995 | 52.324%*** |
| 10 | 0.232 | 0.481 | 0.627 | 63.399%**** | 0.027 | 0.034 | 0.040 | 99.911%**** | 0.0910 | 0.418 | 0.576 | 71.106%**** |
| 11 | 0.070 | 0.086 | 0.154 | 92.558%**** | 0.008 | 0.012 | 0.021 | 99.808%**** | 0.025 | 0.073 | 0.157 | 93.688%**** |
| 12 | 0.025 | 0.025 | 0.056 | 65.556%**** | 0.001 | 0.001 | 0.002 | 99.916%**** | 0.001 | 0.008 | 0.022 | 62.265%**** |
| [1] | Li Z, Yang D, Gao B, et al. Multiscale hydrologic applications of the latest satellite precipitation products in the Yangtze River basin using a distributed hydrologic model[J]. Journal of Hydrometeorology, 2015, 16(1): 407-426. |
| [2] | Chappel L A, Renzullo L J, Raupach T H, et al. Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia[J]. Journal of Hydrology, 2013, 493: 105-114. |
| [3] | Guo H, Chen S, Bao A M, et al. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China[J]. Atmospheric Research, 2016, 176: 121-133. |
| [4] | 李巧, 戚友存, 朱自伟, 等. 复杂地形下C波段雷达定量降水估计算法[J]. 气象学报, 2021, 79(4): 689-702. |
| [Li Qiao, Qi Youcun, Zhu Ziwei, et al. Quantitative precipitation estimation algorithm for C-band radar situated in complex topographical regions[J]. Acta Meteorologica Sinica, 2021, 79(4): 689-702.] | |
| [5] | 柳云雷, 李昌兴, 张乐坚, 等. 基于高分辨率高程数据统计分析新一代天气雷达组网的地形遮挡影响[J]. 气象学报, 2020, 78(4): 705-720. |
| [Liu Yunlei, Li Changxing, Zhang Lejian, et al. Statistical analysis of terrain blockage impacts on the CINRAD network based on DEM data[J]. Acta Meteorologica Sinica, 2020, 78(4): 705-720.] | |
| [6] | Ma Y, Sun X, Chen H, et al. A two-stage blending approach for merging multiple satellite precipitation estimates and rain gauge observations: An experiment in the northeastern Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2021, 25(1): 359-374. |
| [7] |
陈爱军, 张寅, 楚志刚. 基于FY-4A QPE的中亚五国降水时空分布特征[J]. 干旱区研究, 2023, 40(9): 1369-1381.
doi: 10.13866/j.azr.2023.09.01 |
|
[Chen Aijun, Zhang Yin, Chu Zhigang. Spatiotemporal distribution of precipitation in five Central Asian countries based on FY-4A quantitative precipitation estimates[J]. Arid Zone Research, 2023, 40(9): 1369-1381.]
doi: 10.13866/j.azr.2023.09.01 |
|
| [8] |
邵建, 张肃诏, 陈敏, 等. FY-4A卫星在宁夏短时强降水中的适用性研究[J]. 干旱区研究, 2023, 40(2): 163-172.
doi: 10.13866/j.azr.2023.02.01 |
| [Shao Jian, Zhang Suzhao, Chen Min, et al. Application of FY-4A satellite data in short-time severe precipitation of Ningxia[J]. Arid Zone Research, 2023, 40(2): 163-172.] | |
| [9] | Yang M, Liu G, Chen T, et al. Evaluation of GPM IMERG precipitation products with the point rain gauge records over Sichuan, China[J]. Atmospheric Research, 2020, 246: 105101. |
| [10] |
陈圆圆, 宋晓东, 黄敬峰, 等. 基于地面站点观测降水资料的中国区域日降水融合产品精度评价[J]. 自然资源学报, 2016, 31(6): 1004-1014.
doi: 10.11849/zrzyxb.20150173 |
|
[Chen Yuanyuan, Song Xiaodong, Huang Jingfeng, et al. Evaluation of the high-resolution daily merged precipitation product over China based on in situ observations[J]. Journal of Natural Resources, 2016, 31(6): 1004-1014.]
doi: 10.11849/zrzyxb.20150173 |
|
| [11] | 师春香, 潘旸, 谷军霞, 等. 多源气象数据融合格点实况产品研制进展[J]. 气象学报, 2019, 77(4): 774-783. |
| [Shi Chunxiang, Pan Yang, Gu Junxia, et al. A review of multi-source meteorological data fusion products[J]. Acta Meteorologica Sinica, 2019, 77(4): 774-783.] | |
| [12] | 司瑶冰, 韩经纬, 李云鹏, 等. 基于网格数据的内蒙古决策气象服务技术研究与实现[J]. 沙漠与绿洲气象, 2020, 14(6): 127-133. |
| [Si Yaobing, Han Jingwei, Li Yunpeng, et al. Technology and implementation of meteorological decision-making services based on grid data in Inner Mongolia[J]. Desert and Oasis Meteorology, 2020, 14(6): 127-133.] | |
| [13] | Adler R F, Mathew S, George H, et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation[J]. Atmosphere, 2018, 9(4): 138. |
| [14] | 宇婧婧, 沈艳, 潘旸, 等. 中国区域逐日融合降水数据集与国际降水产品的对比评估[J]. 气象学报, 2015, 73(2): 394-410. |
| [Yu Jingjing, Shen Yan, Pan Yang, et al. Comparative assessment between the daily merged precipitation dataset over China and the worlds popular counterparts[J]. Acta Meteorologica Sinica, 2015, 73(2): 394-410.] | |
| [15] | 沈艳, 潘旸, 宇婧婧, 等. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报, 2013, 36(1): 37-46. |
| [Shen Yan, Pan Yang, Yu Jingjing, et al. Quality assessment of hourly merged precipitation product over China[J]. Transactions of Atmospheric Sciences, 2013, 36(1): 37-46.] | |
| [16] |
尹瑞琪, 李琼芳, 陈启慧, 等. 伊犁河上游流域三种日尺度降水产品性能评估[J]. 干旱区研究, 2024, 41(4): 540-549.
doi: 10.13866/j.azr.2024.04.02 |
|
[Yin Ruiqi, Li Qiongfang, Chen Qihui, et al. Performance evaluation of three daily precipitation products in the upper reaches of the Ili River[J]. Arid Zone Research, 2024, 41(4): 540-549.]
doi: 10.13866/j.azr.2024.04.02 |
|
| [17] |
曾岁康, 雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7): 1305-1318.
doi: 10.11821/dlxb201907003 |
|
[Zeng Suikang, Yong Bin. Evaluation of the GPM-based IMERG and GSMaP precipitation estimates over the Sichuan region[J]. Acta Geographica Sinica, 2019, 74(7): 1305-1318.]
doi: 10.11821/dlxb201907003 |
|
| [18] | 潘旸, 沈艳, 宇婧婧, 等. 基于贝叶斯融合方法的高分辨率地面-卫星-雷达三源降水融合试验[J]. 气象学报, 2015, 73(1): 177-186. |
| [Pan Yang, Shen Yan, Yu Jingjing, et al. An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method[J]. Acta Meteorologica Sinica, 2015, 73(1): 177-186.] | |
| [19] | 许冠宇, 李琳琳, 田刚, 等. 国家级降水融合产品在长江流域的适用性评估[J]. 暴雨灾害, 2020, 39(4): 400-408. |
| [Xu Guanyu, Li Lingling, Tian Gang, et al. Assessing the applicability of national precipitation merged products in the Yangtze River Basin[J]. Torrential Rain and Disasters, 2020, 39(4): 400-408.] | |
| [20] | Rodell M, Houser R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3): 381-394. |
| [21] |
崔园园, 覃军, 敬文琪, 等. GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37(1): 123-136.
doi: 10.7522/j.issn.1000-0534.2017.00035 |
|
[Cui Yuanyuan, Qin Jun, Jing Wenqi, et al. Applicability evaluation of merged soil moisture in GLDAS and CLDAS products over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(1): 123-136.]
doi: 10.7522/j.issn.1000-0534.2017.00035 |
|
| [22] | 齐媛媛, 陈莹莹, 施建成. 欧洲陆面数据同化系统组成,系统设计和原理简介[J]. 遥感信息, 2007(4): 93-97. |
| [Qi Yuanyuan, Chen Yingying, Shi Jiancheng. Review on European land data assimilation system[J]. Remote Sensing Information, 2007(4): 93-97.] | |
| [23] | 师春香, 张帅, 孙帅, 等. 改进的CLDAS降水驱动对中国区域积雪模拟的影响评估[J]. 气象, 2018, 44(8): 985-997. |
| [Shi Chunxiang, Zhang Shuai, Sun Shuai, et al. Effect of improved precipitation CLDAS on snow simulation in China[J]. Meteorological Monthly, 2018, 44(8): 985-997.] | |
| [24] | 韩帅, 师春香, 姜志伟, 等. CMA高分辨率陆面数据同化系统(HRCLDAS-V1.0)研发及进展[J]. 气象科技进展, 2018, 8(1): 102-108, 116. |
| [Han Shuai, Shi Chunxiang, Jiang Zhiwei, et al. Development and progress of high resolution CMA land surface data assimilation system[J]. Advances in Meteorological Science and Technology, 2018, 8(1): 102-108, 116.] | |
| [25] | 王旻燕, 姚爽, 姜立鹏, 等. 我国全球大气再分析(CRA-40)卫星遥感资料的收集和预处理[J]. 气象科技进展, 2018, 8(1): 158-163. |
| [Wang Minyan, Yao Shuang, Jiang Lipeng, et al. Collection and pre-processing of satellite remote-sensing data in CRA-40 (CMA’s Global Atmospheric ReAnalysis)[J]. Advances in Meteorological Science and Technology, 2018, 8(1): 158-163.] | |
| [26] |
徐柳昕, 王文雨, 王晓燕, 等. 多源降水产品在高寒内陆河流域的适用性和误差组分[J]. 干旱区研究, 2025, 42(1): 51-62.
doi: 10.13866/j.azr.2025.01.05 |
|
[Xu Liuxin, Wang Wenyu, Wang Xiaoyan, et al. Evaluation and error decomposition of multisource precipitation data in an alpine and endorheic river watershed[J]. Arid Zone Research, 2025, 42(1): 51-62.]
doi: 10.13866/j.azr.2025.01.05 |
|
| [27] | 赵天保, 符淙斌, 柯宗建, 等. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 242-254. |
| [Zhao Tianbao, Fu Congbin, Ke Zongjian, et al. Research status and progress of global atmospheric reanalysis data[J]. Advances in Earth Science, 2010, 25(3): 242-254.] | |
| [28] |
王彩霞, 黄安宁, 郑鹏, 等. 中国第一代全球陆面再分析(CRA40/Land)气温和降水产品在中国大陆的适用性评估[J]. 高原气象, 2022, 41(5): 1325-1334.
doi: 10.7522/j.issn.1000-0534.2021.00056 |
|
[Wang Caixia, Huang Anning, Zheng Peng, et al. Applicability evaluation of China’s first generation of global land surface reanalysis(CRA40/Land)air temperature and precipitation products in China’s mainland[J]. Plateau Meteorology, 2022, 41(5): 1325-1334.]
doi: 10.7522/j.issn.1000-0534.2021.00056 |
|
| [29] | Hodges K I, Lee R W, Bengtsson L. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25[J]. Journal of Climate, 2011, 24(5): 4888-4906. |
| [30] | 杜冰, 吴薇, 黄晓龙, 等. 多种融合降水实况分析产品在雅安宝兴暴雨过程中的适用性评估[J]. 高原山地气象研究, 2023, 43(1): 111-118. |
| [Du Bing, Wu Wei, Huang Xiaolong, et al. Applicability assessment of merged precipitation real-time products in the process of flood disaster in Baoxing, Ya’an[J]. Plateau Mountain Meteorology Research, 2023, 43(1): 111-118.] | |
| [31] | 旷兰, 田茂举, 翟丹华, 等. 基于2021年重庆市暴雨监测数据的CMPAS产品精度评估[J]. 水电能源科学, 2022, 40(12): 6-10. |
| [Kuang Lan, Tian Maoju, Zhai Danhua, et al. CMPAS product accuracy evaluation based on Chongqing City rainstorm monitoring data in 2021[J]. Water Resources and Power, 2022, 40(12): 6-10.] | |
| [32] | 旷兰, 田茂举, 李强, 等. 多源降水融合分析产品在重庆复杂地形下的精度评价[J]. 中国农业气象, 2023, 44(1): 71-81. |
| [Kuang Lan, Tian Maoju, Li Qiang, et al. Study on accuracy evaluation of multi-source precipitation fusion analysis products under complex terrain in Chongqing[J]. Chinese Journal of Agrometeorology, 2023, 44(1): 71-81.] | |
| [33] | 陈小婷, 刘瑞芳, 梁绵, 等. 三源融合降水产品在陕西省的适用性评估[J]. 陕西气象, 2023(1): 1-7. |
| [Chen Xiaoting, Liu Ruifang, Liang Mian, et al. Applicability evaluation of CMPAS in Shaanxi Province[J]. Journal of Shaanxi Meteorology, 2023(1): 1-7.] | |
| [34] | 鲁奕岑, 徐宁, 王丽吉, 等. 浙江多源融合实况分析产品质量评估及应用[J]. 科技通报, 2021, 37(9): 23-28. |
| [Lu Yicen, Xu Ning, Wang Liji, et al. Analysis of real time product quality evaluation and application in Zhejiang[J]. Bulletin of Science and Technology, 2021, 37(9): 23-28.] | |
| [35] | Dai L, Che T, Ding Y, et al. Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing[J]. The Cryosphere, 2017, 11(4): 1933-1948. |
| [36] | 陈权亮, 刘皓, 胡淼, 等. 青藏高原东侧复杂地形区极端降水研究进展[J]. 暴雨灾害, 2024, 43(3): 255-265. |
| [Chen Quanliang, Liu Hao, Hu Miao, et al. A review of the studies on extreme precipitation in the complex terrain region on the eastern side of the Tibetan Plateau[J]. Torrential Rain and Disasters, 2024, 43(3): 255-265.] | |
| [37] | 潘旸, 谷军霞, 宇婧婧, 等. 中国区域高分辨率多源降水观测产品的融合方法试验[J]. 气象学报, 2018, 76(5): 755-766. |
| [Pan Yang, Gu Junxia, Yu Jingjing, et al. Test of merging methods for multi-source observed precipitation products at high resolution over China[J]. Acta Meteorologica Sinica, 2018, 76(5): 755-766.] | |
| [38] | 孙小龙, 宋海清, 李平, 等. 基于CLDAS资料的内蒙古干旱监测分析[J]. 气象, 2015, 41(10): 1245-1252. |
| [Sun Xiaolong, Song Haiqing, Li Ping, et al. Analysis of drought monitoring in inner mongolia based on CLDAS data[J]. Meteorological Monthly, 2015, 41(10): 1245-1252.] | |
| [39] |
饶莉娟, 王健林, 张星. 不同插值方法对精细化预报产品在青岛地区的检验比较[J]. 中国农学通报, 2020, 36(32): 100-108.
doi: 10.11924/j.issn.1000-6850.casb20191000706 |
|
[Rao Lijuan, Wang Jianlin, Zhang Xing. Different interpolation methods: Comparison for refined forecast products in Qingdao area[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 100-108.]
doi: 10.11924/j.issn.1000-6850.casb20191000706 |
|
| [40] | 蒋雨荷, 黄晓龙, 李施颖, 等. 四川CLDAS 5 km小时能见度实况产品与能见度观测站资料质量对比评估[J]. 高原山地气象研究, 2020, 40(3): 73-78. |
| [Jiang Yuhe, Huang Xiaolong, Li Shiying, et al. Comparison and evaluation of the data quality between CLDAS 5 km hourly visibility products and visibility observation stations in Sichuan Province[J]. Plateau and Mountain Research, 2020, 40(3): 73-78.] | |
| [41] | 于洋, 卫伟, 陈利顶, 等. 黄土高原年均降水量空间插值及其方法比较[J]. 应用生态学报, 2015, 26(4): 999-1006. |
|
[Yu Yang, Wei Wei, Chen Liding, et al. Comparison on the methods for spatial interpolation of the annual average precipitation in the Loess Plateau region[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 999-1006.]
pmid: 26259439 |
|
| [42] | 李依瞳, 慕秀香, 朴美花, 等. 2019—2020年1—3月降水和气温的多源数据融合产品检验评估及对比分析[J]. 气象灾害防御, 2021, 28(3): 1-5. |
| [Li Yitong, Mu Xiuxiang, Piao Meihua, et al. Evaluation and comparative analysis of multi-source data fusion products of precipitation and temperature from January to March in 2019-2020[J]. Meteorological Disaster Prevention, 2021, 28(3): 1-5.] | |
| [43] | 龙柯吉, 师春香, 韩帅, 等. 中国区域高分辨率温度实况融合格点分析产品质量评估[J]. 高原山地气象研究, 2019, 39(3): 67-74. |
| [Long Keji, Shi Chunxiang, Han Shuai, et al. Quality assessment of high resolution temperature merged grid analysis product in China[J]. Plateau and Mountain Meteorology Research, 2019, 39(3): 67-74.] | |
| [44] | 王雅萍, 王遂缠, 孔令旺. CLDAS降水产品的适用性分析及机器学习订正应用[J]. 气象水文海洋仪器, 2024, 41(3): 111-115. |
| [Wang Yaping, Wang Suichan, Kong Lingwang. Application analysis and machine learning correction of CLDAS precipitation product[J]. Meteorological, Hydrological and Marine Instruments, 2024, 41(3): 111-115.] | |
| [45] | 陈科文, 张祖平, 龙军. 多源信息融合关键问题、研究进展与新动向[J]. 计算机科学, 2013, 40(8): 6-13. |
| [Chen Kewen, Zhang Zuping, Long Jun. Multisource information fusion: Key issues, research progress and new trends[J]. Computer Science, 2013, 40(8): 6-13.] |
| [1] | 杜军, 高佳佳, 陈涛, 次旺, 巴果卓玛. 1981—2024年雅鲁藏布江流域降水集中度与特征量季节性变化[J]. 干旱区研究, 2025, 42(7): 1159-1172. |
| [2] | 张雅静, 郝蕊芳. 中国北方农牧交错带东段不同类型流域水文模型适用性[J]. 干旱区研究, 2025, 42(6): 1021-1031. |
| [3] | 郭建茂, 吴登国, 韩金龙, 张茹水, 王勇. 基于雷达和遥感卫星的新疆区域降水反演[J]. 干旱区研究, 2025, 42(6): 957-969. |
| [4] | 孔祥伟, 李晨蕊, 邸文婧, 杨毅, 付正旭, 杨秀梅. 甘肃河东夏季区域性短时强降水特征[J]. 干旱区研究, 2025, 42(6): 970-980. |
| [5] | 刘精, 郑育琳, 刘艳, 李晗薇. 新疆夏季降水主模态年代际变化及影响因子分析[J]. 干旱区研究, 2025, 42(4): 577-588. |
| [6] | 石霞, 刘维成, 陈晓燕, 黄玉霞, 谭丹, 伍继业. 西北东部一次强降水形成机制及能量来源[J]. 干旱区研究, 2025, 42(4): 600-612. |
| [7] | 霍斌昱, 郭本泓, 刘成英, 徐恒明, 蒋宇强. 腾格里沙漠表土磁化率的指示意义[J]. 干旱区研究, 2025, 42(4): 613-621. |
| [8] | 赵世康, 穆振侠, 李刚, 杨荣钦, 黄娩婷. 新疆大气可降水量时空演变特征及其与降水转化关系[J]. 干旱区研究, 2025, 42(2): 191-201. |
| [9] | 杨柳, 杨霞, 刁鹏, 胡德喜, 王媛媛. ECMWF模式对昆仑山北坡夏季降水日变化特征的预报性能分析[J]. 干旱区研究, 2025, 42(1): 27-39. |
| [10] | 徐柳昕, 王文雨, 王晓燕, 王雪莹, 谷黄河. 多源降水产品在高寒内陆河流域的适用性和误差组分[J]. 干旱区研究, 2025, 42(1): 51-62. |
| [11] | 李宇航, 余文学, 杨永均, 朱燕峰, 马静, 陈浮. 近60 a天山北坡经济带天然径流量时空变化及归因识别[J]. 干旱区研究, 2024, 41(9): 1446-1455. |
| [12] | 陆文静, 瞿德业, 杨明月, 黄翰林, 杨山泉. 基于GCM的蒙古高原降水稳定同位素模拟[J]. 干旱区研究, 2024, 41(9): 1491-1502. |
| [13] | 袁征, 张志高, 闫瑾, 刘嘉毅, 胡柱钰, 王赟, 蔡茂堂. 1960—2020年黄河流域不同等级降水时空特征[J]. 干旱区研究, 2024, 41(8): 1259-1271. |
| [14] | 李超, 隆霄, 曹怡清, 韩子霏, 王号, 郑景元. 不同风场结构下贺兰山地形降水的理想数值试验[J]. 干旱区研究, 2024, 41(8): 1272-1287. |
| [15] | 王岱, 李欣, 张雯, 马阳, 王素艳, 李佳瑶. 海温与海冰对宁夏汛期降水分布特征异常的协同影响[J]. 干旱区研究, 2024, 41(8): 1288-1299. |
|
||