干旱区研究 ›› 2025, Vol. 42 ›› Issue (7): 1173-1183.doi: 10.13866/j.azr.2025.07.02 cstr: 32277.14.AZR.20250702

• 天气与气候 • 上一篇    下一篇

青藏高原东部三种降水数据产品的适用性评估

李漠雨(), 董少睿(), 郭英香   

  1. 青海省气候中心,青海省防灾减灾重点实验室,青海 西宁 810001
  • 收稿日期:2024-11-14 修回日期:2025-04-18 出版日期:2025-07-15 发布日期:2025-07-07
  • 通讯作者: 董少睿. E-mail: 1426547030@qq.com
  • 作者简介:李漠雨(1999-),女,助理工程师,主要从事气候监测评估研究. E-mail: limoyu1999@163.com
  • 基金资助:
    青海省科技厅基础研究计划项目(2025-ZJ-736);青海省气象局科研项目计划(QXMS2024-27)

Applicability evaluation of three kinds of precipitation products in eastern Qinghai-Xizang Plateau

LI Moyu(), DONG Shaorui(), GUO Yingxiang   

  1. Qinghai Climate Center, Qinghai Key Laboratory of Disaster Preventing and Reducing, Xining 810001, Qinghai, China
  • Received:2024-11-14 Revised:2025-04-18 Published:2025-07-15 Online:2025-07-07

摘要: 选取2022年青藏高原东部地面气象站逐日降水数据,对中国区域融合降水分析系统CMPAS(China Meteorological Administration Multi-source Precipitation Analysis System)、中国气象局陆面数据同化系统CLDAS(China Meteorological Administration Land Data Assimilation System)、中国第一代全球陆面再分析产品CRA(China Meteorological Administration’s Global Atmospheric Reanalysis)的降水资料进行评估,采用误差指标和分级评估法,分区域检验三种降水产品在青藏高原东部的适用性。结果表明:(1) 对青藏高原东部而言,在分析年尺度降水时,CMPAS降水与观测误差最小、相关性最强、明显优于另外两种资料。应优先选用CMPAS降水产品。(2) 从年内变化来看,CMPAS各月降水量与观测最为接近、误差小、相关性高,CRA各月降水量较观测均偏多,CLDAS多数月份较观测明显偏少。在分析青藏高原东部月尺度降水时,CMPAS效果最好。(3) 青藏高原东部两次大范围降水过程中,CLDAS对过程累积雨量的反应最为准确,CMPAS能准确反应最大降水中心、最大降水中心雨量、小到大雨等级降水、降水集中出现时间及落区。在分析青藏高原东部降水过程时,CMPAS效果最佳。研究结果为青藏高原东部站点稀疏区的精细化监测提供数据支撑,为网格降水产品在天气气候业务、气象防灾减灾中的应用打下坚实基础。

关键词: 降水, 数据产品, 适用性, 评估, 青藏高原

Abstract:

Based on the 2022 daily precipitation data from weather stations in the eastern Tibetan Plateau, this study evaluated the accuracy of three datasets from the China Meteorological Administration: the Multi-source Precipitation Analysis System (CMPAS), Land Data Assimilation System (CLDAS), and Global Atmospheric Reanalysis (CRA)—via error indices and grading methods. The results indicate: (1) CMPAS exhibits the lowest error and highest correlation, making it the most reliable for annual precipitation analysis. (2) CMPAS monthly data align closely with observations, while CRA overestimates and CLDAS underestimates precipitation in most months. (3) During two large-scale precipitation events, CLDAS best captures accumulated rainfall, while CMPAS more accurately reflects precipitation centers, intensities, timing, and location. Overall, CMPAS is the most effective dataset for analyzing precipitation in the region, supporting improved monitoring of sparse areas and laying a solid foundation for climate operations and disaster prevention.

Key words: precipitation, data product, applicability, quality assessment, Qinghai-Xizang Plateau