| [1] |
Fuhrman J A. Microbial community structure and its functional implications[J]. Nature, 2009, 459(7244): 193-199.
|
| [2] |
Naeem S, Li S. Biodiversity enhances ecosystem reliability[J]. Nature, 1997, 390(6659): 507-509.
|
| [3] |
Shi S, Nuccio E, Herman D J, et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons[J]. MBio, 2015, 6(4): 1-8.
|
| [4] |
余炎炎, 李梦莎, 刘啸林, 等. 大兴安岭典型永久冻土土壤细菌群落组成和多样性[J]. 微生物学通报, 2020, 47(9): 2759-2770.
|
|
[Yu Yanyan, Li Mengsha, Liu Xiaolin, et al. Composition and diversity of soil bacterial communities in typical permafrost regions of the Greater Khingan Mountains[J]. Microbiology China, 2020, 47(9): 2759-2770.]
|
| [5] |
王晓波. 我国北方草地土壤微生物群落的空间格局及其驱动机制[D]. 沈阳: 中国科学院沈阳应用生态研究所, 2016.
|
|
[Wang Xiaobo. Spatial Patterns and Driving Mechanisms of Soil Microbial Communities in Grasslands of Northern China[D]. Shenyang: Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, 2016.]
|
| [6] |
黄俊杰, 陆雅海. 土壤拟杆菌与梭菌分解多糖类有机物质的研究进展与展望[J]. 微生物学通报, 2022, 49(3): 1147-1157.
|
|
[Huang Junjie, Lu Yahai. Research progress and prospects on the decomposition of polysaccharides by soil Bacteroidetes and Clostridia[J]. Microbiology China, 2022, 49(3): 1147-1157.]
|
| [7] |
斯林林, 徐静, 曹凯, 等. 绿肥种植对红壤旱地生土细菌群落结构的影响[J]. 浙江农业学报, 2023, 35(8): 1864-1875.
doi: 10.3969/j.issn.1004-1524.20221096
|
|
[Si Linlin, Xu Jing, Cao Kai, et al. Effects of green manure cultivation on bacterial community structure in raw soil of red soil dryland[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1864-1875.]
doi: 10.3969/j.issn.1004-1524.20221096
|
| [8] |
Jones R T, Robeson M S, Lauber C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal Emultidisciplinary Journal of Microbial Ecology, 2009, 3(4): 442-453.
|
| [9] |
秦杰, 姜昕, 周晶, 等. 长期不同施肥黑土细菌和古菌群落结构及主效影响因子分析[J]. 植物营养与肥料学报, 2015, 21(6): 1590-1598.
|
|
[Qin Jie, Jiang Xin, Zhou Jing, et al. Analysis of bacterial and archaeal community structure and main influencing factors in black soil under long-term different fertilization practices[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1590-1598.]
|
| [10] |
Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J]. Applied and Environmental Microbiology, 2006, 72(3): 1719-1728.
doi: 10.1128/AEM.72.3.1719-1728.2006
pmid: 16517615
|
| [11] |
Ranjard L, Poly F, Nazaret S. Monitoring complex bacterial communities using culture-independent molecular techniques: Application to soil environment[J]. Research in Microbiology, 2000, 151(3): 167-177.
doi: 10.1016/s0923-2508(00)00136-4
pmid: 10865943
|
| [12] |
武华周, 娄德钊, 涂娜娜, 等. 抗感青枯病桑树根际细菌群落结构与多样性[J]. 福建农业学报, 2020, 35(9): 1004-1011.
|
|
[Wu Huazhou, Lou Dezhao, Tu Nana, et al. Structure and diversity of bacterial communities in the rhizosphere of mulberry trees resistant to bacterial wilt disease[J]. Fujian Journal of Agricultural Sciences, 2020, 35(9): 1004-1011.]
|
| [13] |
木古丽·木哈西, 博涛, 吾尔恩·阿合别尔迪, 等. 新疆伊犁野生阿魏菇的生长发育规律及生境分析[J]. 干旱区资源与环境, 2021, 35(4): 160-164.
|
|
[Muhaxi Muguli, Bo Tao, Ahebierdi Wueren, et al. Growth and development patterns and habitat analysis of wild Pleurotus ferulae in Yili, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2021, 35(4): 160-164.]
|
| [14] |
Liu M H, Liu F, Ng T B, et al. Purification and characterization of pleuroferin, a novel protein with in vitro anti-non-small cell lung cancer activity from the mushroom Pleurotus ferulae lanzi[J]. Process Biochemistry, 2022, 122: 16-25.
|
| [15] |
Muguli M, Liu F, Ng T B. Structural characterization and in vitro hepatoprotective activity of a novel antioxidant polysaccharide from fruiting bodies of the mushroom Pleurotus ferulae[J]. International Journal of Biological Macromolecules, 2023, 243: 125124.
|
| [16] |
木古丽·木哈西, 吾尔恩·阿合别尔迪, 刘方, 等. 新疆伊犁野生阿魏菇菌株的分离鉴定与培养特性[J]. 微生物学杂志, 2021, 41(6): 103-110.
|
|
[Muhaxi Muguli, Ahebierdi Wueren, Liu Fang. Isolation, identification, and cultural characteristics of wild Pleurotus ferulae strains from Yili, Xinjiang[J]. Journal of Microbiology, 2021, 41(6): 103-110.]
|
| [17] |
郑剑英, 李宇辉, 张晓荣, 等. 土壤养分速测的土样采集方法[J]. 吉林农业, 2006(2): 23.
|
|
[Zheng Jianying, Li Yuhui, Zhang Xiaorong, et al. Soil sampling methods for rapid soil nutrient testing[J]. Agriculture of Jilin, 2006(2): 23.]
|
| [18] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
|
|
[Bao Shidan. Soil Agro-Chemical Analysis[M]. Beijing: China Agriculture Press, 2000.]
|
| [19] |
冯慧琳, 徐辰生, 何欢辉, 等. 生物炭对土壤酶活和细菌群落的影响及其作用机制[J]. 环境科学, 2021, 42(1): 422-432.
|
|
[Feng Huilin, Xu Chensheng, He Huanhui, et al. Effects of biochar on soil enzyme activity and bacterial community and its mechanisms[J]. Environmental Science, 2021, 42(1): 422-432.]
|
| [20] |
张艳, 郭书亚, 尚赏, 等. 甘薯/玉米不同间作方式对土壤养分、酶活性及作物产量的影响[J]. 山西农业科学, 2020, 48(8): 1234-1238.
|
|
[Zhang Yan, Guo Shuya, Shang Shang, et al. Effects of different sweet potato/maize intercropping patterns on soil nutrients, enzyme activity, and crop yield[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(8): 1234-1238.]
|
| [21] |
Mori H, Maruyama F, Kato H, et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes[J]. DNA Research, 2014, 21(2): 217-227.
doi: 10.1093/dnares/dst052
pmid: 24277737
|
| [22] |
Xu N, Tan G C, Wang H Y, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8.
|
| [23] |
Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): 884-890.
doi: 10.1093/bioinformatics/bty560
pmid: 30423086
|
| [24] |
Magoč T, Salzberg S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
doi: 10.1093/bioinformatics/btr507
pmid: 21903629
|
| [25] |
Edgar R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998.
doi: 10.1038/nmeth.2604
pmid: 23955772
|
| [26] |
Stackebrandt E, Goebel B M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic Bacteriology, 1994, 44(4): 846-849.
|
| [27] |
Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267.
doi: 10.1128/AEM.00062-07
pmid: 17586664
|
| [28] |
Langille M G I, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821.
doi: 10.1038/nbt.2676
pmid: 23975157
|
| [29] |
王宏伟, 黄清俊, 李萍, 等. 3种草本植物盐碱土栽培地的根际环境变化[J]. 上海农业学报, 2012, 28(3): 66-69.
|
|
[Wang Hongwei, Huang Qingjun, Li Ping, et al. The rhizosphere soil environment changes after growing 3 species of herbaceous plants on saline alkali soil[J]. Acta Agriculturae Shanghai, 2012, 28(3): 66-69.]
|
| [30] |
Guo Xiaolin, Zhou Yongbin. Effects of land use patterns on the bacterial community structure and diversity of wetland soils in the Sanjiang Plain[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 1-12.
|
| [31] |
文少白, 李勤奋, 侯宪文, 等. 微生物降解纤维素的研究概况[J]. 中国农学通报, 2010, 26(1): 231-236.
|
|
[Wen Shaobai, Li Qinfen, Hou Xianwen, et al. Recent advances in microbial degradation of cellulose[J]. Chinese Agricultural Science Bulletin, 2010, 26(1): 231-236.]
doi: 10.11924/j.issn.1000-6850.2009-1564
|
| [32] |
Cao T T, Luo Y C, Shi M, et al. Microbial interactions for nutrient acquisition in soil: Miners, scavengers, and carriers[J]. Soil Biology and Biochemistry, 2024, 188: 109215.
|
| [33] |
赵亚楠. 荒漠草原灌丛人为转变过程中土壤碳氮耦合特征及机制[D]. 银川: 宁夏大学, 2022.
|
|
[Zhao Yanan. Soil Carbon and Nitrogen Coupling Characteristics and Mechanisms During Anthropogenic Transformation of Desert Steppe Shrub[D]. Yinchuan: Ningxia University, 2022.]
|
| [34] |
Zhang H, Sekiguchi Y, Hanada S. Gemmatimonas aurantiaca gen. nov. sp. nov. a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(4): 1155-1163.
|
| [35] |
PLugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 63: 541-556.
doi: 10.1146/annurev.micro.62.081307.162918
pmid: 19575558
|
| [36] |
Trivedi P, Anderson I C, Singh B K. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction[J]. Trends in Microbiology, 2013, 21(12): 641-651.
doi: 10.1016/j.tim.2013.09.005
pmid: 24139848
|
| [37] |
肖德顺, 徐春梅, 王丹英, 等. 增氧模式对水稻根际微生物多样性和群落结构的影响[J]. 环境科学, 2023, 44(11): 6362-6376.
|
|
[Xiao Deshun, Xu Chunmei, Wang Danying, et al. Effects of oxygen enhancement mode on rhizosphere microbial diversity and community structure of rice[J]. Environmental Science, 2023, 44(11): 6362-6376.]
|