干旱区研究 ›› 2025, Vol. 42 ›› Issue (10): 1899-1912.doi: 10.13866/j.azr.2025.10.13 cstr: 32277.14.AZR.20251013
杨英1(
), 李沁1, 王源1, 杨贵军1, 田进花1, 李雄2, 张大治1(
)
收稿日期:2025-04-11
修回日期:2025-06-21
出版日期:2025-10-15
发布日期:2025-10-22
通讯作者:
张大治. E-mail: zdz313@nxu.edu.cn作者简介:杨英(1992-),女,博士,讲师,主要从事环境动物方面的研究. E-mail: yangy5773@nxu.edu.cn
基金资助:
YANG Ying1(
), LI Qin1, WANG Yuan1, YANG Guijun1, TIAN Jinhua1, LI Xiong2, ZHANG Dazhi1(
)
Received:2025-04-11
Revised:2025-06-21
Published:2025-10-15
Online:2025-10-22
摘要:
西北荒漠半荒漠草原地区是我国风能资源富集区,集中式大型风电场运行会对鸟类产生怎样的影响,且其主要影响因素尚未得到关注。于2024年春季和秋季,采用栅格抽样法对宁夏太阳山风电场的鸟类多样性及其相关环境因子进行了调查研究。结果表明:风电栅格鸟类群落多样性特征指标低于对照栅格;风电机组密度和额定功率显著影响鸟类群落多样性,中等额定功率(2000 kW)风电机组所在区域鸟类多样性水平相对较高;风电机组运行产生的噪声强度并未对鸟类多样性产生明显影响,而电磁辐射强度显著影响春季鸟类群落的均匀度;与风电机组的距离是影响鸟类群落多样性的首要因素,鸟类对风电机组存在一定的规避效应,此外,风电机组尺寸、植物丰富度和高度等也是影响太阳山风电场鸟类多样性的重要因素。因此,在荒漠半荒漠草原地区风电场规划与建设过程中,可通过增加间距降低风电机组密度、优先架设中等额定功率的风电机组、定向提升风电场内部植被丰富度与平均高度等实现鸟类多样性保护与绿色能源开发的协同优化。
杨英, 李沁, 王源, 杨贵军, 田进花, 李雄, 张大治. 宁夏太阳山风电场鸟类群落多样性及其影响因素[J]. 干旱区研究, 2025, 42(10): 1899-1912.
YANG Ying, LI Qin, WANG Yuan, YANG Guijun, TIAN Jinhua, LI Xiong, ZHANG Dazhi. Bird community diversity and influencing factors in the Taiyangshan wind farm of Ningxia[J]. Arid Zone Research, 2025, 42(10): 1899-1912.
表2
太阳山风电场鸟类调查名录"
| 目 | 科 | 种 | 生态 类群 | 区系型 | 分布型 | 居留型 | 保护 等级 | IUCN | 数量 (春/秋) |
|---|---|---|---|---|---|---|---|---|---|
| 鸡形目Galliformes | 雉科Phasianidae | 斑翅山鹑 Perdix dauurica | 陆禽类 | De | 古北界 | R | LC | 0/1 | |
| 环颈雉 Phasianus colchicus | 陆禽类 | O | 古北界 | R | LC | 0/2 | |||
| 雁形目Anseriformes | 鸭科Anatidae | 赤麻鸭 Tadorna ferruginea | 游禽类 | Uf | 古北界 | S, R | LC | 7/3 | |
| 鸽形目Columbiformes | 鸠鸽科Columbidae | 原鸽 Columba livia | 陆禽类 | O3 | 广布种 | R | LC | 0/26 | |
| 岩鸽 Columba rupestris | 陆禽类 | O3 | 古北界 | R | LC | 4/0 | |||
| 雨燕目Apodiformes | 雨燕科Apodidae | 普通雨燕 Apus apus | 攀禽类 | O1 | 古北界 | S | LC | 14/0 | |
| 鹃形目Cuculiformes | 杜鹃科Cuculidae | 大杜鹃 Cuculus canoru | 攀禽类 | O1 | 广布种 | S | LC | 1/0 | |
| 鸻形目Charadriiformes | 鸥科Laridae | 渔鸥 Ichthyaetus ichthyaetus | 游禽类 | D | 古北界 | P | LC | 0/1 | |
| 普通燕鸥 Sterna hirundo | 游禽类 | Cc | 古北界 | S, P | LC | 3/0 | |||
| 鹰形目Falconiformes | 鹰科Accipitridae | 短趾雕 Circaetus gallicus | 猛禽类 | U | 广布种 | P | 二级 | LC | 0/3 |
| 靴隼雕 Hieraaetus pennatus | 猛禽类 | U | 古北界 | P | 二级 | LC | 0/1 | ||
| 大鵟 Buteo hemilasius | 猛禽类 | Df | 古北界 | P | 二级 | LC | 0/2 | ||
| 犀鸟目Bucerotiformes | 戴胜科Upupidae | 戴胜 Upupa epops | 攀禽类 | O | 广布种 | R | LC | 1/0 | |
| 隼形目Falconiformes | 隼科Falconidae | 红隼 Falco tinnunculus | 猛禽类 | O1 | 广布种 | R | 二级 | LC | 5/9 |
| 红脚隼 Falco amurensis | 猛禽类 | Ud | 古北界 | S | 二级 | LC | 1/11 | ||
| 燕隼 Falco subbuteo | 猛禽类 | Ug | 古北界 | P | 二级 | LC | 0/4 | ||
| 雀形目Passeriformes | 伯劳科Laniidae | 楔尾伯劳 Lanius sphenocercus | 鸣禽类 | Mc | 古北界 | S | LC | 1/58 | |
| 鸦科Corvidae | 喜鹊 Pica serica | 鸣禽类 | Ch | 古北界 | R | LC | 22/49 | ||
| 红嘴山鸦 Pyrrhocorax pyrrhocorax | 鸣禽类 | O3 | 古北界 | R | LC | 17/34 | |||
| 达乌里寒鸦 Coloeus dauuricus | 鸣禽类 | U | 古北界 | R | LC | 5/0 | |||
| 百灵科Alaudidae | 凤头百灵 Galerida cristata | 鸣禽类 | O1 | 广布种 | R | LC | 55/62 | ||
| 角百灵 Eremophila alpestris | 鸣禽类 | C | 古北界 | R | LC | 4/0 | |||
| 亚洲短趾百灵Alaudala cheleensis | 鸣禽类 | O | 广布种 | R | LC | 123/14 | |||
| 云雀 Alauda arvensis | 鸣禽类 | Ue | 古北界 | W | 二级 | LC | 41/0 | ||
| 燕科Hirundinidae | 家燕 Hirundo rustica | 鸣禽类 | Ch | 古北界 | S | LC | 0/3 | ||
| 鸫科Turdidae | 虎斑地鸫 Zoothera aurea | 鸣禽类 | U | 广布种 | P | LC | 0/1 | ||
| 鹟科Muscicapidae | 北红尾鸲 Phoenicurus auroreus | 鸣禽类 | M | 古北界 | R | LC | 0/1 | ||
| 漠䳭 Oenanthe deserti | 鸣禽类 | Da | 古北界 | S | LC | 6/1 | |||
| 白顶䳭 Oenanthe pleschanka | 鸣禽类 | Da | 古北界 | S | LC | 1/0 | |||
| 雀科Passeridea | 麻雀 Passer montanus | 鸣禽类 | Uh | 广布种 | R | LC | 43/33 | ||
| 鹡鸰科Motacillidae | 布氏鹨 Anthus godlewskii | 鸣禽类 | U | 古北界 | S | LC | 0/1 |
表3
广义线性模型(GLM)分析风电机组对鸟类群落多样性的影响"
| 鸟类群落多样性[χ2(P)] | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 春季 | 秋季 | ||||||||||
| 多度 | 丰富度 | Shannon-Wiener 多样性指数(H′) | Pielou均匀 度指数(E) | Simpson优势度指数(D) | 多度 | 丰富度 | Shannon-Wiener 多样性指数(H′) | Pielou均匀 度指数(E) | Simpson优势度指数(D) | ||
| 截距 | 32.165 (<0.001) | 62.830 (<0.001) | 21.289 (<0.001) | 23.263 (<0.001) | 22.488 (<0.001) | 6.869 (0.009) | 39.254 (<0.001) | 11.284 (0.001) | 13.878 (<0.001) | 11.955 (0.001) | |
| 风电机组密 度(DWT) | 4.514 (0.341) | 4.144 (0.387) | 6.794 (0.147) | 1.941 (0.018) | 8.153 (0.086) | 1.305 (0.861) | 0.150 (0.997) | 1.021 (0.907) | 1.149 (0.886) | 1.272 (0.866) | |
| 风电机组额定 功率(PTurb) | 1.606 (0.658) | 0.050 (0.997) | 0.895 (0.827) | 3.468 (0.325) | 1.454 (0.693) | 2.097 (0.552) | 9.298 (0.026) | 9.025 (0.029) | 7.870 (0.049) | 8.365 (0.039) | |
| 与风电机组距 离(DTurb) | 0.456 (0.796) | 0.543 (0.762) | 1.939 (0.379) | 5.116 (0.077) | 2.747 (0.253) | 0.364 (0.834) | 0.207 (0.902) | 0.175 (0.916) | 0.491 (0.782) | 0.249 (0.883) | |
表4
各栅格组鸟类物种组成及其生态类型"
| 栅格组 | 栅格 编号 | 鸟类群落组成[物种名称生态类型(个体数目)] | |
|---|---|---|---|
| 春季(5月) | 秋季(9月) | ||
| G0 | 100 | 云雀①(5),喜鹊①(1),普通燕鸥④(1) | 凤头百灵①(15),布氏鹨①(1),麻雀①(7),喜鹊①(1),赤麻鸭④(3),渔鸥④(1) |
| 140 | 凤头百灵①(1) | 喜鹊①(3),楔尾伯劳①(1),红脚隼②(1),燕隼②(2) | |
| 145 | 凤头百灵①(2),云雀①(6) | 凤头百灵①(6),大鵟②(1) | |
| 193 | 喜鹊①(2),云雀①(3),凤头百灵①(1) | 凤头百灵①(6) | |
| 239 | 凤头百灵①(7),云雀①(6),喜鹊①(1) | 0 | |
| 259 | 喜鹊①(1) | 麻雀①(6),喜鹊①(3) | |
| 267 | 云雀①(7) | 喜鹊①(2),亚洲短趾百灵①(2) | |
| 291 | 亚洲短趾百灵①(1),凤头百灵①(1) | 0 | |
| 364 | 亚洲短趾百灵①(2),凤头百灵①(1) | 红嘴山鸦①(1) | |
| 424 | 亚洲短趾百灵①(1) | 楔尾伯劳①(2) | |
| 532 | 麻雀①(2),漠䳭①(1) | 凤头百灵①(7),喜鹊①(1) | |
| 717 | 喜鹊①(1),云雀①(4),达乌里寒鸦①(1),凤头百灵①(1) | 喜鹊①(2) | |
| 761 | 角百灵①(2),云雀①(3) | 喜鹊①(1) | |
| 794 | 红嘴山鸦①(4),云雀①(15),普通雨燕⑤(2) | 楔尾伯劳①(51),短趾雕②(3) | |
| G1 | 125 | 0 | 喜鹊①(3) |
| 170 | 云雀①(1),喜鹊①(1) | 凤头百灵①(3),喜鹊①(1) | |
| 234 | 云雀①(1) | 喜鹊①(3),麻雀①(1) | |
| 429 | 亚洲短趾百灵①(1) | 喜鹊①(1) | |
| 454 | 麻雀①(7) | 0 | |
| 457 | 0 | 红嘴山鸦①(15),红脚隼②(1) | |
| 494 | 凤头百灵①(1) | 0 | |
| 543 | 麻雀①(3),喜鹊①(2) | 凤头百灵①(2),喜鹊①(3),靴隼雕②(1) | |
| 570 | 亚洲短趾百灵①(2) | 喜鹊①(2) | |
| 676 | 亚洲短趾百灵①(6),凤头百灵①(5),喜鹊①(1),岩鸽③(2) | 喜鹊①(1) | |
| 724 | 凤头百灵①(1),红隼②(2) | 亚洲短趾百灵①(1),原鸽③(26) | |
| 741 | 云雀①(6),麻雀①(6) | 楔尾伯劳①(1),虎斑地鸫①(1),红隼②(1),斑翅山鹑③(1) | |
| 772 | 喜鹊①(1),云雀①(4),凤头百灵①(2),白顶䳭①(1),红隼②(1) | 楔尾伯劳①(1) | |
| G2 | 294 | 凤头百灵①(1) | 凤头百灵①(1),喜鹊①(1),红脚隼②(1) |
| 306 | 凤头百灵①(4),云雀①(8) | 红脚隼②(2) | |
| 357 | 0 | 0 | |
| 400 | 亚洲短趾百灵①(2),普通燕鸥④(1) | 喜鹊①(1),红隼②(1) | |
| 420 | 红嘴山鸦①(1),亚洲短趾百灵①(3) | 红嘴山鸦①(4) | |
| 445 | 亚洲短趾百灵①(2),凤头百灵①(1),红嘴山鸦①(2) | 凤头百灵①(6),楔尾伯劳①(1) | |
| 481 | 角百灵①(2),麻雀①(2),达乌里寒鸦①(3),喜鹊①(1),赤麻鸭④(2) | 喜鹊①(1) | |
| 500 | 达乌里寒鸦①(1),戴胜⑤(1) | 0 | |
| 522 | 喜鹊①(1),亚洲短趾百灵①(8),大杜鹃⑤(1) | 喜鹊①(2),亚洲短趾百灵①(1) | |
| 590 | 麻雀①(2) | 红隼②(1) | |
| 611 | 红嘴山鸦①(2),亚洲短趾百灵①(6),普通雨燕⑤(12) | 喜鹊①(4) | |
| 616 | 喜鹊①(2) | 0 | |
| 632 | 喜鹊①(1),凤头百灵①(2),亚洲短趾百灵①(7),红隼②(2) | 北红尾鸲①(1),凤头百灵①(5),环颈雉③(2) | |
| 679 | 亚洲短趾百灵①(4),红嘴山鸦①(3) | 0 | |
| G3 | 173 | 云雀①(1) | 亚洲短趾百灵①(2),家燕①(3),喜鹊①(1),红脚隼②(1) |
| 369 | 云雀①(2),凤头百灵①(1) | 0 | |
| 682 | 凤头百灵①(1),麻雀①(3) | 红隼②(1) | |
| 495 | 亚洲短趾百灵①(4) | 喜鹊①(2),凤头百灵①(2) | |
| 401 | 亚洲短趾百灵①(2),喜鹊①(1),普通燕鸥④(1) | 0 | |
| 382 | 凤头百灵①(2),喜鹊①(1) | 喜鹊①(1),大鵟②(1) | |
| 504 | 麻雀①(1),喜鹊①(1),红脚隼②(1) | 亚洲短趾百灵①(6) | |
| 637 | 0 | 0 | |
| 685 | 亚洲短趾百灵①(1),麻雀①(1) | 喜鹊①(2) | |
| 645 | 亚洲短趾百灵①(4) | 喜鹊①(1) | |
| G4 | 81 | 0 | 喜鹊①(1),亚洲短趾百灵①(2) |
| 86 | 红嘴山鸦①(2),云雀①(1) | 红隼②(1) | |
| 91 | 云雀①(4),赤麻鸭④(2) | 0 | |
| 214 | 凤头百灵①(6) | 凤头百灵①(1),红隼②(1) | |
| 221 | 漠䳭①(1),云雀①(12) | 凤头百灵①(1),麻雀①(9),红隼②(1) | |
| 243 | 凤头百灵①(3),亚洲短趾百灵①(2) | 红脚隼②(1) | |
| 310 | 漠䳭①(2),凤头百灵①(1),云雀①(2) | 0 | |
| 327 | 麻雀①(1) | 喜鹊①(2) | |
| 329 | 麻雀①(3),凤头百灵①(2) | 凤头百灵①(2),楔尾伯劳①(1),喜鹊①(1) | |
| 550 | 凤头百灵①(1),亚洲短趾百灵①(3) | 红嘴山鸦①(10) | |
| G5 | 118 | 红嘴山鸦①(2),喜鹊①(1),麻雀①(12) | 麻雀①(10) |
| 151 | 赤麻鸭④(2) | 漠䳭①(1) | |
| 182 | 漠䳭①(1) | 凤头百灵①(1) | |
| 213 | 凤头百灵①(4),红嘴山鸦①(2) | 红脚隼②(2) | |
| 244 | 云雀①(7) | 0 | |
| 278 | 云雀①(3) | 0 | |
| 323 | 凤头百灵①(3) | 红隼②(1),燕隼②(1),红脚隼②(1) | |
| 341 | 0 | 红隼②(1) | |
| 342 | 0 | 0 | |
| 343 | 0 | 0 | |
| 396 | 喜鹊①(1) | 凤头百灵①(2),红嘴山鸦①(2),喜鹊①(2) | |
| 402 | 0 | 燕隼②(1) | |
| 431 | 喜鹊①(1),漠䳭①(1),亚洲短趾百灵①(2) | 凤头百灵①(2),红嘴山鸦①(2) | |
| 432 | 楔尾伯劳①(1),赤麻鸭④(1) | 红脚隼②(1) | |
| [1] | Rosin Z M, Skórka P, Szymański P, et al. Constant and seasonal drivers of bird communities in a wind farm: Implications for conservation[J]. PeerJ, 2016, 4: e2105. |
| [2] | Kiesecker J M, Evans J S, Fargione J, et al. Win-win for wind and wildlife: A vision to facilitate sustainable development[J]. PLoS One, 2011, 6(4): e17566. |
| [3] |
王怡雯, 马瑶瑶, 史培军, 等. 干旱区光伏电站运营对局地生态环境的影响[J]. 干旱区研究, 2024, 41(8): 1423-1433.
doi: 10.13866/j.azr.2024.08.16 |
|
[Wang Yiwen, Ma Yaoyao, Shi Peijun, et al. The impact of photovoltaic power plant operation on local ecological environments in arid areas[J]. Arid Zone Research, 2024, 41(8): 1423-1433. ]
doi: 10.13866/j.azr.2024.08.16 |
|
| [4] | GWEC. COP26:A Wind Industry Score-sheet[EB/OL] (2021-12-17) [2025-04-10]. https://gwec.net/cop26-a-wind-industry-score-sheet/ . |
| [5] |
Schuster E, Bulling L, Köppel J. Consolidating the state of knowledge: a synoptical review of wind energy’s wildlife effects[J]. Environmental Management, 2015, 56(2): 300-331.
doi: 10.1007/s00267-015-0501-5 pmid: 25910869 |
| [6] |
Kumara H N, Babu S, Rao G B, et al. Responses of birds and mammals to long-established wind farms in India[J]. Scientific Reports, 2022, 12(1): 1339.
doi: 10.1038/s41598-022-05159-1 pmid: 35079039 |
| [7] | 姚怡然, 梅应丹. 风能资源开发利用对生物多样性的影响[J]. 环境影响评价, 2023, 45(3): 39-43. |
| [Yao Yiran, Mei Yingdan. The impact of the development and utilization of wind energy resources on biodiversity[J]. Environmental Impact Assessment, 2023, 45(3): 39-43. ] | |
| [8] | 蔡澜涛, 庾太林, 阮韵, 等. 桂北山地风电场的鸟类撞击风机现象研究[J]. 安徽大学学报(自然科学版), 2023, 47(5): 100-108. |
| [Cai Lantao, Yu Tailin, Ruan Yun, et al. Study on bird collision phenomenon of mountain wind farm in northern Guangxi[J]. Journal of Anhui University (Natural Science Edition), 2023, 47(5): 100-108. ] | |
| [9] | Schaub T, Klaassen R H G, De Zutter C, et al. Effects of wind turbine dimensions on the collision risk of raptors: A simulation approach based on flight height distributions[J]. Science of the Total Environment, 2024, 954: 176551. |
| [10] |
Zhao S, Xu H, Song N, et al. Effect of wind farms on wintering ducks at an important wintering ground in China along the East Asian-Australasian Flyway[J]. Ecology and Evolution, 2020, 10(17): 9567-9580.
doi: 10.1002/ece3.6701 pmid: 32953084 |
| [11] |
Marques A T, Santos C D, Hanssen F, et al. Wind turbines cause functional habitat loss for migratory soaring birds[J]. Journal of Animal Ecology, 2020, 89(1): 93-103.
doi: 10.1111/1365-2656.12961 pmid: 30762229 |
| [12] | Song N, Xu H, Zhao S, et al. Effects of wind farms on the nest distribution of magpie (Pica pica) in agroforestry systems of Chongming Island, China[J]. Global Ecology and Conservation, 2021, 27: e1536. |
| [13] | Lemaître J, Lamarre V. Effects of wind energy production on a threatened species, the Bicknell’s ThrushCatharus bicknelli, with and without mitigation[J]. Bird Conservation International, 2020, 30(2): 194-209. |
| [14] | Xu H, Zhao S, Song N, et al. Abundance and behavior of little egrets (Egretta garzetta) near an onshore wind farm in Chongming Dongtan, China[J]. Journal of Cleaner Production, 2021, 312: 127662. |
| [15] | 熊莉萍. 宁夏风力发电前景分析[J]. 能源与节能, 2011(9): 5-6. |
| [Xiong Liping. Ningxia wind power prospect[J]. Energy and Energy Conservation, 2011(9): 5-6. ] | |
| [16] | 马珂昕, 王瑞泾, 唐荣, 等. 宁夏天然草地的空间分布与类型特征[J]. 草业科学, 2023, 40(4): 837-847. |
| [Ma Kexin, Wang Ruijing, Tang Rong, et al. Spatial distribution and type characteristics of a naturalgrassland in Ningxia[J]. Pratacultural Science, 2023, 40(4): 837-847. ] | |
| [17] |
齐容镰, 李庆波, 任佳, 等. “三北”工程地区植被覆盖变化特征及其驱动力分析——以宁夏为例[J]. 干旱区研究, 2024, 41(10): 1740-1752.
doi: 10.13866/j.azr.2024.10.12 |
|
[Qi Ronglian, Li Qingbo, Ren Jia, et al. Study on the characteristics of changes in vegetation cover and its driving forcesin the Three-North Shelterbelt program regions: Taking Ningxia as example[J]. Arid Zone Research, 2024, 41(10): 1740-1752. ]
doi: 10.13866/j.azr.2024.10.12 |
|
| [18] | 全国野生动物保护管理与经营利用标准化技术委员会(SAC/TC 369). 陆生野生动物及其栖息地调查技术规程第4部分: 鸟类:GB/T 37364.4-2024[S]. 北京: 中国标准出版社, 2024. |
| [Wildlife Conservation Management and Husbandry Business (SAC/TC 369). Code of Practice for Terrestrial Wildlife and Its Habitat Survey—Part 4: Birds: GB/T 37364.4-2024[S]. Beijing: Standards Press of China, 2024. ] | |
| [19] | 白文娟, 李志强, 姚立英. 浅析风电场建设对鸟类的影响及对策建议[C] // 中国环境科学学会. 2013中国环境科学学会学术年会论文集(第六卷). 北京: 中国环境出版社, 2013: 406-408. |
| [Bai Wenjuan, Li Zhiqiang, Yao Liying. A brief analysis of the impact of wind farm construction on birds and suggested countermeasures[C]// Chinese Society For Environmental Sciences. Proceedings of the 2013 Annual Meeting of Chinese Society for Environmental Sciences (Volume VI). Beijing: China Environmental Press, 2013: 406-408. ] | |
| [20] | 李佳琦, 赵伟, 万雅琼, 等. 内蒙古阿拉善荒漠东部繁殖期鸟类多样性研究[J]. 生态与农村环境学报, 2020, 36(11): 1375-1380. |
| [Li Jiaqi, Zhao Wei, Wan Yaqiong, et al. Studies on the diversity of breeding birds in the desert of East Alxa, Inner Mongolia[J]. Journal of Ecology and Rural Environment, 2020, 36(11): 1375-1380. ] | |
| [21] | 袁鹏, 刘荣国, 张波, 等. 宁夏中卫沙坡头国家级自然保护区景观格局变化对鸟类多样性的影响[J]. 干旱区资源与环境, 2024, 38(8): 189-200. |
| [Yuan Peng, Liu Rongguo, Zhang Bo, et al. Effect of landscape pattern change on bird diversity in Shapotou National Nature Reserve of Zhongwei, Ningxia[J]. Journal of Arid Land Resources and Environment, 2024, 38(8): 189-200. ] | |
| [22] | 张大治, 杨贵军, 赵红雪, 等. 宁夏的鸟类资源[J]. 宁夏大学学报(自然科学版), 2024, 45(1): 69-86. |
| [Zhang Dazhi, Yang Guijun, Zhao Hongxue, et al. The present condition of the bird resource in Ningxia[J]. Journal of Ningxia University (Natural Science Edition), 2024, 45(1): 69-86. ] | |
| [23] | 郑光美. 中国鸟类分类与分布名录(第四版)[M]. 北京: 科学出版社, 2023. |
| [Zheng Guangmei. A Checklist on the Classification and Distribution of the Birds of China[M]. 4th ed. Beijing: Science Press, 2023. ] | |
| [24] | Watson R T, Kolar P S, Ferrer M, et al. Raptor interactions with wind energy: Case studies from around the world[J]. The Journal of Raptor Research, 2018, 52(1): 1-18. |
| [25] | Bellebaum J, Korner-Nievergelt F, Dürr T, et al. Wind turbine fatalities approach a level of concern in a raptor population[J]. Journal for Nature Conservation, 2013, 21(6): 394-400. |
| [26] | Gómez Catasús J, Garza V, Traba J. Wind farms affect the occurrence, abundance and population trends of small passerine birds: The case of the Dupont’s lark[J]. Journal of Applied Ecology, 2018, 55(4): 2033-2042. |
| [27] | 朱永可, 李阳端, 楼瑛强, 等. 风力发电对鸟类的影响以及应对措施[J]. 动物学杂志, 2016, 51(4): 682-691. |
| [Zhu Yongke, Li Yangduan, Lou Yingqiang, et al. Impact of wind farm on birds and the mitigation strategies[J]. Chinese Journal of Zoology, 2016, 51(4): 682-691. ] | |
| [28] |
蒋俊霞, 杨丽薇, 李振朝, 等. 风电场对气候环境的影响研究进展[J]. 地球科学进展, 2019, 34(10): 1038-1049.
doi: 10.11867/j.issn.1001-8166.2019.10.1038 |
|
[Jiang Junxia, Yang Liwei, Li Zhenzhao, et al. Progress in the research on the impact of wind farms on climate and environment[J]. Advances in Earth Science, 2019, 34(10): 1038-1049. ]
doi: 10.11867/j.issn.1001-8166.2019.10.1038 |
|
| [29] | Drewitt A L, Langston R H W. Assessing the impacts of wind farms on birds[J]. Ibis, 2006, 148: 29-42. |
| [30] | Loss S R, Will T, Marra P P. Estimates of bird collision mortality at wind facilities in the contiguous United States[J]. Biological Conservation, 2013, 168: 201-209. |
| [31] | Pearce Higgins J W, Stephen L, Langston R H W, et al. The distribution of breeding birds around upland wind farms[J]. Journal of Applied Ecology, 2009, 46(6): 1323-1331. |
| [32] | 计新宇. 典型平原风电场风资源评估与风电机组选型布置[D]. 北京: 华北电力大学, 2024. |
| [Ji Xinyu. Wind Resource Assessment and Wind Turbine Selection and Layout of Typical Plain Wind Farms[D]. Beijing: School of Energy Power and Mechanical Engineering, 2024. ] | |
| [33] | Balmori A, Hallberg Ö. The urban decline of the House Sparrow (Passer domesticus): A possible link with Electromagnetic Radiation[J]. Electromagnetic Biology and Medicine, 2009, 26(2): 141-151. |
| [34] | Fernie K J, Reynolds S J. The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: A review[J]. Journal of Toxicology and Environmental Health, part B, 2005, 8(2): 127-140. |
| [35] | Gómez-Catasús J, Barrero A, Llusia D, et al. Wind farm noise shifts vocalizations of a threatened shrub-steppe passerine[J]. Environmental Pollution, 2022, 303: 119144. |
| [36] |
Whalen C E, Brown M B, Mcgee J, et al. Wind turbine noise limits propagation of greater prairie-chicken boom chorus, but does it matter?[J]. Ethology, 2019, 125(12): 863-875.
doi: 10.1111/eth.12940 |
| [37] | 徐明军. 风电场噪声的主要来源及降噪技术[J]. 中国设备工程, 2020(20): 172-173. |
| [Xu Mingjun. Main sources of noise in wind farms and noise reduction technologies[J]. China Plant Engineering, 2020(20): 172-173. ] | |
| [38] | 徐以强. 风电场噪声问题研究[J]. 上海节能, 2022(2): 204-209. |
| [Xu Yiqiang. Study on wind farm noise problem[J]. Shanghai Energy Saving, 2022(2): 204-209. ] | |
| [39] | Zwart M C, Dunn J C, McGowan P J K, et al. Wind farm noise suppresses territorial defense behavior in a songbird[J]. Behavioral Ecology, 2016, 27(1): 101-108. |
| [40] | Barber J R, Crooks K R, Fristrup K M. The costs of chronic noise exposure for terrestrial organisms[J]. Trends in Ecology & Evolution, 2010, 25(3): 180-189. |
| [41] | Szymański P, Deoniziak K, Łosak K, et al. The song of Skylarks Alauda arvensis indicates the deterioration of an acoustic environment resulting from wind farm start-up[J]. Ibis, 2017, 159(4): 769-777. |
| [42] | 胡韧, 叶锦韶, 戚永乐. 海上风电场对鸟类的影响及其危害预防[J]. 南方能源建设, 2021, 8(3): 1-7. |
| [Hu Ren, Ye Jinshao, Qi Yongle. Impact and harm mitigation of offshore wind farms on birds[J]. Southern Energy Construction, 2021, 8(3): 1-7. ] | |
| [43] | 王明哲, 刘钊. 风力发电场对鸟类的影响[J]. 西北师范大学学报(自然科学版), 2011, 47(3): 87-91. |
| [Wang Mingzhe, Liu Zhao. The effects of wind farm on birds[J]. Journal of Northwest Normal University (Natural Science), 2011, 47(3): 87-91. ] | |
| [44] | 马晓宇. 内蒙古达里诺尔风电场昆虫群落结构及多样性研究[D]. 内蒙古: 内蒙古大学, 2014. |
| [Ma Xiaoyu. Wind Farms in Inner Mongolia Dalinuoer Community Structure and Diversity of Insect[D]. Inner Mongolia: Inner Mongolia University, 2014. ] | |
| [45] | 付哲林, 王鹏, 李婧, 等. 风电场电磁辐射污染初探[J]. 环境与发展, 2011, 23(12): 76-80. |
| [Fu Zhelin, Wang Peng, Li Jing, et al. The wind electric station at the beginning of eleotro-magnetic radiation pollution searches pays wise[J]. Environment and Development, 2011, 23(12): 76-80. ] | |
| [46] | 黎华志. 大规模风电开发对环境的影响分析以及应对措施[J]. 科技展望, 2015, 25(4): 253. |
| [Li Huazhi. Analysis of the environmental impact of large-scale wind power development and corresponding mitigation Measures[J]. Science and Technology, 2015, 25(4): 253. ] | |
| [47] | 田洪亚. 笼养虎皮鹦鹉和信鸽感知磁场信息的中枢机制研究[D]. 苏州: 苏州大学, 2019. |
| [Tian Hongya. Study on the Central Mechanism of Sensing Magnetic Field Information in Cage-raised Budgies and Homing Pigeons[D]. Suzhou: Soochow University, 2019. ] | |
| [48] | Nath A, Singha H, Lahkar B P. Correlation does not imply causation: Decline of house sparrow overshadowed by electromagnetic radiation[J]. Urban Ecosystems, 2022, 25(4): 1279-1295. |
| [49] |
Connell J H. Intermediate-disturbance hypothesis[J]. Science, 1979, 204(4399): 1344-1345.
pmid: 17813173 |
| [50] | 李辉, 蔡灿, 袁林青, 等. 龙感湖二期风电场运营期鸟类群落多样性及动态变化[J]. 湖北大学学报(自然科学版), 2025, 47(4): 473-481. |
| [Li Hui, Cai Can, Yuan Linqing, et al. Diversity and dynamic changes of bird community after the operation of wind power plant II in Longgan Lake[J]. Journal of Hubei University (Natural Science), 2025, 47(4): 473-481. ] | |
| [51] | Barbet Massin M, Thuiller W, Jiguet F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models?[J]. Ecography, 2010, 33(5): 878-886. |
| [52] | Davey C M, Chamberlain D E, Newson S E, et al. Rise of the generalists: Evidence for climate driven homogenization in avian communities[J]. Global Ecology and Biogeography, 2012, 21(5): 568-578. |
| [53] | 范佳旭, 连懿, 高晖春, 等. 中国大陆鸟类物种多样性特征及影响因素[J]. 生态学报, 2025, 45(2): 596-614. |
| [Fan Jiaxu, Lian Yi, Gao Huichun, et al. Characteristics of avian species diversity and influencing factors in the mainland of China[J]. Acta Ecologica Sinica, 2025, 45(2): 596-614. ] | |
| [54] |
刘鑫, 王利群, 李昊然, 等. 基于“服务重要性-生态敏感性-生物多样性”的内蒙古生态网络识别及优化[J]. 干旱区研究, 2024, 41(7): 1207-1216.
doi: 10.13866/j.azr.2024.07.12 |
|
[Liu Xin, Wang Liqun, Li Haoran, et al. Identification and optimization strategy of an ecological network in Inner Mongolia based on “service importance-habitat sensitivity-biodiversity”[J]. Arid Zone Research, 2024, 41(7): 1207-1216. ]
doi: 10.13866/j.azr.2024.07.12 |
| [1] | 徐文韬, 杜永军, 张衡, 田浩, 柴文光, 李小龙, 贾伟康, 杨广. 干旱内陆河流域典型荒漠生态系统水热通量变化特征及影响因素[J]. 干旱区研究, 2025, 42(9): 1574-1586. |
| [2] | 袁子喧, 辛智鸣, 程一本, 于涛, 刘昱萱. 乌兰布和沙漠地区多枝柽柳蒸腾耗水特征及其与环境因子的关系[J]. 干旱区研究, 2025, 42(8): 1426-1436. |
| [3] | 李金辉, 胡静, 金红喜, 王祺, 姚泽. 环境因子对不同种源黑果枸杞花青素积累的影响[J]. 干旱区研究, 2025, 42(8): 1525-1535. |
| [4] | 王广权, 木古丽·木哈西, 吾尔恩·阿合别尔迪, 玛依拉·吐尔地别克, 张雪梅, 庞克坚. 新疆伊犁野生阿魏菇根际土壤环境因子与细菌群落组成特征[J]. 干旱区研究, 2025, 42(5): 875-884. |
| [5] | 窦家晅, 徐利岗, 苑蒙飞, 汤英. 不同供氮水平下宁夏枸杞养分吸收利用特征研究[J]. 干旱区研究, 2025, 42(4): 754-765. |
| [6] | 王微, 杨淑婷, 海云瑞. 宁夏土地利用碳排放时空演变及影响因素[J]. 干旱区研究, 2025, 42(3): 545-555. |
| [7] | 王岱, 马阳, 张雯, 李欣, 黄莹, 王素艳. 基于相似误差订正方法的宁夏冬季气温模式产品解释应用[J]. 干旱区研究, 2025, 42(2): 236-245. |
| [8] | 陈松清, 东红芳, 岳怡锋, 郝媛媛, 刘新, 曹先宇, 马骏. 不同气候情景下中国沙棘的地理分布及动态变化预测[J]. 干旱区研究, 2024, 41(9): 1560-1571. |
| [9] | 王岱, 李欣, 张雯, 马阳, 王素艳, 李佳瑶. 海温与海冰对宁夏汛期降水分布特征异常的协同影响[J]. 干旱区研究, 2024, 41(8): 1288-1299. |
| [10] | 董彭蓓, 任宗萍, 李鹏, 王凯博, 贺国凯, 王璞. 土地利用变化下宁夏生态系统服务权衡协同关系研究[J]. 干旱区研究, 2024, 41(6): 1032-1044. |
| [11] | 赵立超, 张成福, 贺帅, 苗林, 冯霜, 潘思涵. 复杂山区地表温度模拟及影响——以内蒙古大青山为例[J]. 干旱区研究, 2024, 41(5): 765-775. |
| [12] | 马龙龙, 易志远, 魏采用, 周峰, 李明涛, 乔成龙, 杜灵通. 宁夏盐池县生态系统水分利用效率时空特征及其影响因素[J]. 干旱区研究, 2024, 41(4): 650-660. |
| [13] | 安宁, 郭彬, 张东梅, 杨淇越, 罗维成. 河西走廊中段荒漠植被组成及土壤养分空间分布特征[J]. 干旱区研究, 2024, 41(3): 432-443. |
| [14] | 朵海瑞, 傲云巴特尔, 吾健, 罗洪巍, 同德兴, 孔繁燕, 杨芳, 魏婷婷. 柴达木盆地可鲁克湖-托素湖自然保护区鸟类多样性[J]. 干旱区研究, 2024, 41(3): 521-526. |
| [15] | 柴巧弟, 马瑞, 王安林, 张富, 刘腾, 田永胜. 河西走廊阻沙固沙带典型荒漠植物叶功能性状[J]. 干旱区研究, 2024, 41(11): 1898-1907. |
|
||