干旱区研究 ›› 2025, Vol. 42 ›› Issue (5): 875-884.doi: 10.13866/j.azr.2025.05.10 cstr: 32277.14.AZR.20250510

• 植物生态 • 上一篇    下一篇

新疆伊犁野生阿魏菇根际土壤环境因子与细菌群落组成特征

王广权1(), 木古丽·木哈西1,2(), 吾尔恩·阿合别尔迪1,2, 玛依拉·吐尔地别克1,2, 张雪梅1,2, 庞克坚1,3   

  1. 1.伊犁师范大学生物科学与技术学院新疆 伊宁 835000
    2.伊犁师范大学资源与生态研究所新疆 伊宁 835000
    3.石河子大学新疆 石河子 832061
  • 收稿日期:2025-02-26 修回日期:2025-03-30 出版日期:2025-05-15 发布日期:2025-10-22
  • 通讯作者: 木古丽·木哈西. E-mail: muguli@163.com
  • 作者简介:王广权(2001-),男,硕士研究生,主要从事干旱区植物内生菌研究. E-mail: 18139353160@163.com
  • 基金资助:
    伊犁师范大学资源与生态研究所开放课题重点项目(YLNURE202201);伊犁哈萨克自治州科技计划项目(YYD2023A08)

Characterization of environmental factors and bacterial community composition in rhizosphere soil of wild Pleurotus ferulae in Xinjiang Ili

WANG Guangquan1(), Muguli MUHAXI1,2(), Oren AKHBERDI1,2, Mayira TURDIBEK1,2, ZHANG Xuemei1,2, PANG Kejian1,3   

  1. 1. College of Biological Sciences and Technology, Yili Normal University, Yining 835000, Xinjiang, China
    2. Institute of Resources and Ecology, Yili Normal University, Yining 835000, Xinjiang, China
    3. Shihezi University, Shihezi 832061, Xinjiang, China
  • Received:2025-02-26 Revised:2025-03-30 Published:2025-05-15 Online:2025-10-22

摘要: 为揭示伊犁野生阿魏菇(Pleurotus ferulae)根际土壤细菌群落特征及其与土壤环境因子的互作机制,突破人工驯化阿魏菇的瓶颈,本研究通过整合土壤理化性质分析、土壤酶活性检测及Illumina高通量测序技术,对比阿魏菇根际与非根际土壤的微生态差异。结果显示:(1) 阿魏菇根际土壤pH值显著低于非根际土壤(P<0.05),而有机质、速效氮磷及酶活性均显著高于非根际土壤(P<0.05),表明宿主与微生物协同调控养分循环。(2) 测序共获得1895个细菌分类操作单元(Operational Taxonomic Units,OTUs),其中,阿魏菇根际土壤中独有的OTUs数为156个,非根际土壤中独有的OTUs数为102个。根际土壤细菌群落中拟杆菌门(14.26%)、芽单胞菌门(4.87%)和疣微菌门(1.24%)显著富集,假单胞菌属、黄杆菌属等特有菌属可能通过有机质降解和植物促生功能支持阿魏菇生长。(3) 冗余分析(Redundancy Aanalysis,RDA)表明,根际土壤有机质、速效氮磷及β-葡萄糖苷酶是驱动群落结构的关键因子(累计解释率>70%),拟杆菌门与酸杆菌门响应碳氮循环,而变形菌门与绿弯菌门关联pH适应性。因此,人工栽培中需模拟根际中性环境、增施有机质肥并接种功能菌群以优化菌丝定殖效率。相关结果可为阿魏菇保育及资源可持续利用提供理论依据。

关键词: 野生阿魏菇, 高通量测序, 根际土壤, 环境因子, 细菌群落

Abstract:

In order to reveal the characteristics of rhizosphere soil bacterial communities of wild, Pleurotus ferulae in Ili region, Xinjiang, China and their interaction mechanisms with soil environmental factors, and to break through the bottlenecks of artificial domestication, this study integrated soil physicochemical analysis, soil enzyme activity assays, and Illumina high-throughput sequencing to compare the microecological differences between rhizosphere and non-rhizosphere soils. The results revealed that the pH of rhizosphere soil of P. ferulae was significantly lower than that of non-rhizosphere soil, and organic matter, available nitrogen/phosphorus, and enzyme activities were markedly higher than those of non-rhizosphere soil, indicating a synergistic regulation of nutrient cycling by the host and associated microorganisms. Sequencing identified 1895 bacterial Operational Taxonomic Units (OTUs), with 156 unique to the rhizosphere and 102 unique to non-rhizosphere soils. Bacteroidetes (14.26%), Gemmatimonadetes (4.87%), and Verrucomicrobia (1.24%) were significantly enriched in the rhizosphere soil. Specific genera such as Pseudomonas and Flavobacterium may support the growth of P. ferulae through organic matter degradation and plant growth-promoting functions. Redundancy Analysis (RDA) revealed that organic matter, available nitrogen and phosphorus, and β-Glucosidase were key factors driving community structure (cumulative explanation >70%). Bacteroidetes and Acidobacteria were linked to carbon and nitrogen cycling, whereas Proteobacteria and Chloroflexi were associated with pH adaptability. In artificial cultivation, it is recommended to simulate a near-neutral pH environment in rhizosphere soil, enhance organic matter supplementation, and inoculate functional microbiota to optimize mycelial colonization efficiency. These results provide a theoretical basis for the conservation and sustainable utilization of P. ferulae.

Key words: wild Pleurotus ferulae, high-throughput sequencing, rhizosphere soil, environmental factor, bacterial community