干旱区研究 ›› 2025, Vol. 42 ›› Issue (9): 1640-1649.doi: 10.13866/j.azr.2025.09.08 cstr: 32277.14.AZR.20250908
朱朝华(
), 翟祎笑, 李欣荣, 缪潆祥, 马彤, 李善家(
)
收稿日期:2025-01-22
修回日期:2025-04-16
出版日期:2025-09-15
发布日期:2025-09-16
通讯作者:
李善家. E-mail: lishanjia@lut.edu.cn作者简介:朱朝华(1999-),女,硕士研究生,研究方向植物微生物共生关系. E-mail: zhuzhaohua12@163.com
基金资助:
ZHU Zhaohua(
), ZHAI Yixiao, LI Xinrong, Miao Yingxiang, MA Tong, LI Shanjia(
)
Received:2025-01-22
Revised:2025-04-16
Published:2025-09-15
Online:2025-09-16
摘要:
为揭示荒漠植物种子内生微生物的生态适应机制及促生潜力,本文以旱生植物梭梭(Haloxylon ammodendron)种子为研究对象,结合高通量测序和传统培养技术,揭示其内生微生物群落结构特征和促生、抗逆潜力。结果表明:梭梭种子内生细菌涵盖31门668种,优势门为厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes);内生真菌涉及13门583种,优势门为子囊菌门(Ascomycota)和担子菌门(Basidiomycota)。功能注释显示其内生微生物的分工特征,内生细菌以化能异养和发酵功能为主,内生真菌群落呈现腐生与病原功能分化。常规培养方法筛选到13株可培养内生细菌,其中包括两株多功能促生菌(Priestia aryabhattai HB-4、Priestia megaterium HB-9)和3株耐盐碱菌株(Bacillus zhangzhouensis HB-6、Bacillus safensis HB-10及Bacillus pumilus HB-11)。实验结果显示,菌株HB-4和HB-9能够促进小麦生长;菌株HB-6、HB-10、HB-11能够缓解盐碱胁迫对小麦生长造成的抑制。本研究揭示了梭梭种子内生微生物的生态功能特征,为荒漠生态系统微生物资源挖掘及植物促生菌剂开发提供了新思路。
朱朝华, 翟祎笑, 李欣荣, 缪潆祥, 马彤, 李善家. 梭梭种子内生微生物群落组成及功能[J]. 干旱区研究, 2025, 42(9): 1640-1649.
ZHU Zhaohua, ZHAI Yixiao, LI Xinrong, Miao Yingxiang, MA Tong, LI Shanjia. Community composition and functionalities of endophytic microorganisms in Haloxylon ammodendron seeds[J]. Arid Zone Research, 2025, 42(9): 1640-1649.
表3
梭梭种子内生细菌16S rRNA基因序列对比结果"
| 菌株 | 比对结果 | 相似度/% | NCBI序列号 | GenBank登录号 |
|---|---|---|---|---|
| HB-1 | 高空芽孢杆菌Bacillus altitudinis | 99.88 | NR_042337.1 | PQ774797 |
| HB-2 | 短小芽孢杆菌Bacillus pumilus | 98.94 | NR_115334.1 | PQ774798 |
| HB-3 | 空气芽孢杆菌Bacillus aerius | 99.88 | NR_118439.1 | PQ836096 |
| HB-4 | 阿氏普里斯特氏菌Priestia aryabhattai | 100.00 | NR_115953.1 | PQ774800 |
| HB-5 | 玫瑰色考克氏菌Kocuria rosea | 99.89 | NR_044871.1 | PQ836097 |
| HB-6 | 漳州芽孢杆菌Bacillus zhangzhouensis | 99.89 | NR_148786.1 | PQ836098 |
| HB-7 | 耐寒短杆菌Peribacillus frigoritolerans | 98.25 | NR_115064.1 | PQ774803 |
| HB-8 | 巨大芽孢杆菌Priestia megaterium | 97.54 | NR_116873.1 | PQ836099 |
| HB-9 | 巨大芽孢杆菌Priestia megaterium | 98.70 | NR_112636.1 | PQ774805 |
| HB-10 | 沙福芽孢杆菌Bacillus safensis | 97.21 | NR_041794.1 | PQ836100 |
| HB-11 | 短小芽孢杆菌Bacillus pumilus | 98.58 | NR_043242.1 | PQ836101 |
| HB-12 | 地衣芽孢杆菌Bacillus licheniformis | 99.78 | NR_074923.1 | PQ774804 |
| HB-13 | 嗜糖土地芽孢杆菌Terribacillus aidingensis | 97.90 | NR_114288.1 | PQ836102 |
表4
内生细菌促生功能筛选"
| 菌株 | IAA产量/(μg·mL-1) | 固氮 | 解磷(D/d) | 产铁载体 | 耐盐 | 耐碱 |
|---|---|---|---|---|---|---|
| HB-1 | - | + | 1.50±0.04ef | - | - | + |
| HB-2 | - | + | 1.54±0.09de | - | - | + |
| HB-3 | - | + | 2.36±0.13a | - | - | + |
| HB-4 | 18.48±2.70a | + | - | - | - | - |
| HB-5 | 10.67±0.26b | + | - | - | - | + |
| HB-6 | - | + | 1.77±0.05c | - | + | + |
| HB-7 | 0.25±0.16d | + | - | + | - | - |
| HB-8 | 5.22±2.14c | - | 1.40±0.03f | + | - | - |
| HB-9 | 8.43±1.07b | - | 1.90±0.07b | + | - | - |
| HB-10 | - | + | - | - | + | + |
| HB-11 | - | + | - | - | + | + |
| HB-12 | - | + | 1.64±0.01d | - | + | - |
| HB-13 | - | - | - | - | + | - |
表5
HB-4及HB-9对小麦生理指标的影响"
| 指标 | 对照组CK | HB-4处理组 | HB-9处理组 |
|---|---|---|---|
| 鲜重/g | 0.16±0.00c | 0.36±0.01b | 0.43±0.01a |
| 干重/g | 0.04±0.00b | 0.07±0.01a | 0.05±0.00b |
| 茎长/cm | 22.83±4.01b | 29.50±1.73a | 28.50±0.50ab |
| 根长/cm | 10.67±1.53b | 13.83±1.89ab | 15.50±1.32a |
| 叶绿素含量/(mg·g-1) | 1.09±0.09b | 1.48±0.13a | 1.42±0.20ab |
| 丙二醛含量/(μmol·L-1) | 10.33±0.16a | 7.61±0.45b | 6.86±1.84b |
| CAT活性/(U·mg-1) | 2.52±0.05c | 4.99±0.07a | 3.58±0.19b |
| POD活性/(U·mg-1) | 73.75±3.61b | 92.40±4.66ab | 101.64±19.78a |
| 脯氨酸含量/(μg·g-1) | 16.00±0.79b | 20.80±1.95a | 13.84±1.98b |
表6
盐胁迫下接种菌株对小麦生理指标的影响"
| 指标 | 盐胁迫组 | 对照组 | HB-6处理组 | HB-10处理组 | HB-11处理组 |
|---|---|---|---|---|---|
| 鲜重/g | 0.18±0.03c | 0.23±0.01b | 0.33±0.02a | 0.29±0.01a | 0.21±0.01bc |
| 干重/g | 0.04±0.01c | 0.08±0.01ab | 0.08±0.00ab | 0.08±0.00a | 0.06±0.01b |
| 茎长/cm | 26.17±1.89a | 28.73±1.08a | 30.00±0.50a | 29.00±2.29a | 29.23±2.36a |
| 根长/cm | 10.97±1.38c | 20.63±0.51a | 19.17±1.61a | 19.80±0.30a | 14.17±0.76b |
| 叶绿素含量/(mg·g-1) | 0.94±0.03c | 1.34±0.02a | 1.14±0.05b | 1.33±0.09a | 1.11±0.07b |
| 丙二醛含量/(μmol·L-1) | 7.79±0.48ab | 6.27±0.62c | 9.10±0.68a | 6.98±0.46bc | 7.37±0.64bc |
| CAT活性/(U·mg-1) | 1.67±0.03b | 2.77±0.44a | 2.13±0.17ab | 2.35±0.41ab | 2.54±0.25a |
| POD活性/(U·mg-1) | 52.57±5.90c | 59.76±3.22bc | 72.08±6.00ab | 77.51±2.74a | 73.66±9.38ab |
| 脯氨酸含量/(μg·g-1) | 9.68±0.46c | 16.26±0.12a | 13.88±1.25b | 14.60±0.53b | 13.38±0.29b |
表7
碱胁迫下接种菌株对小麦生理指标的影响"
| 指标 | 碱胁迫组 | 对照组CK | HB-6处理组 | HB-10处理组 | HB-11处理组 |
|---|---|---|---|---|---|
| 鲜重/g | 0.16±0.01c | 0.26±0.02b | 0.26±0.01b | 0.25±0.02b | 0.32±0.02a |
| 干重/g | 0.05±0.00b | 0.06±0.01ab | 0.06±0.00ab | 0.05±0.00ab | 0.07±0.01a |
| 茎长/cm | 25.33±0.25a | 26.67±1.89a | 28.53±0.25a | 24.90±3.42a | 30.20±2.96a |
| 根长/cm | 20.50±1.00a | 18.43±2.15a | 18.27±2.87a | 22.10±0.87a | 20.80±1.49a |
| 叶绿素含量/(mg·g-1) | 1.78±0.14b | 1.95±0.05ab | 1.94±0.11ab | 2.09±0.05a | 1.96±0.05ab |
| 丙二醛含量/(μmol·L-1) | 7.48±0.52a | 6.12±0.82ab | 7.40±0.71a | 4.94±0.23b | 5.25±0.58b |
| CAT活性/(U·mg-1) | 1.13±0.25b | 2.04±0.27a | 2.09±0.34a | 1.54±0.13ab | 1.96±0.21a |
| POD活性/(U·mg-1) | 68.15±8.59b | 56.05±1.81b | 95.56±1.15a | 96.41±3.97a | 67.41±8.04b |
| 脯氨酸含量/(μg·g-1) | 24.67±1.50a | 16.26±0.12c | 20.18±0.66b | 25.23±0.02a | 24.92±0.72a |
| [1] | Chitnis V R, Suryanarayanan T S, Nataraja K N, et al. Fungal endophyte-mediated crop improvement: The way ahead[J]. Frontiers in Plant Science, 2020, 11: 561007. |
| [2] | Ali J, Mukarram M, Ojo J, et al. Harnessing phytohormones: Advancing plant growth and defence strategies for sustainable agriculture[J]. Physiologia Plantarum, 2024, 176(3): e14307. |
| [3] | War A F, Bashir I, Reshi Z A, et al. Insights into the seed microbiome and its ecological significance in plant life[J]. Microbiological Research, 2023, 269: 127318. |
| [4] | Li D, Chen W, Luo W, et al. Seed microbiomes promote Astragalus mongholicus seed germination through pathogen suppression and cellulose degradation[J]. Microbiome, 2025, 13(1): 23. |
| [5] | Liu Y, Zhao K, Stirling E, et al. Heterosis of endophytic microbiomes in hybrid rice varieties improves seed germination[J]. Msystems, 2024, 9(5): e0000424. |
| [6] | Dai Y, Li X, Wang Y, et al. The differences and overlaps in the seed-resident microbiome of four Leguminous and three Gramineous forages[J]. Microbial Biotechnology, 2020, 13(5): 1461-1476. |
| [7] | Yan K, Pei Z, Meng L, et al. Determination of community structure and diversity of seed-vectored endophytic fungi in Alpinia zerumbet[J]. Frontiers in Microbiology, 2022, 13: 814864. |
| [8] | Chiaranunt P, White J F. Plant beneficial bacteria and their potential applications in vertical farming systems[J]. Plants (Basel, Switzerland), 2023, 12(2): 400. |
| [9] | Rabbee M F, Ali M S, Islam M N, et al. Endophyte mediated biocontrol mechanisms of phytopathogens in agriculture[J]. Research in Microbiology, 2024, 175(8): 104229. |
| [10] | Tripathi A, Pandey P, Tripathi S N, et al. Perspectives and potential applications of endophytic microorganisms in cultivation of medicinal and aromatic Plants[J]. Frontiers in Plant Science, 2022, 13: 985429. |
| [11] | Hernández I, Taulé C, Pérez-Pérez R, et al. Endophytic seed-associated bacteria as plant growth promoters of Cuban Rice (Oryza sativa L.)[J]. Microorganisms, 2023, 11(9): 2317. |
| [12] |
Hosseyni Moghaddam M S, Safaie N, Soltani J, et al. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops[J]. Plant Physiology and Biochemistry, 2021, 160: 225-238.
doi: 10.1016/j.plaphy.2021.01.022 pmid: 33517220 |
| [13] | Woo S L, Hermosa R, Lorito M, et al. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture[J]. Nature Reviews Microbiology, 2023, 21(5): 312-326. |
| [14] | Mushtaq S, Shafiq M, Tariq M R, et al. Interaction between bacterial endophytes and host plants[J]. Frontiers in Plant Science, 2022, 13: 1092105. |
| [15] |
牟红霞, 刘秉儒, 李子豪, 等. 矿井水对荒漠草原土壤微生物群落结构及多样性的影响[J]. 干旱区研究, 2022, 39(5): 1618-1630.
doi: 10.13866/j.azr.2022.05.26 |
|
[Mou Hongxia, Liu Bingru, Li Zihao, et al. Effects of mine water on soil microbial community structure and diversity in desert steppe[J]. Arid Zone Research, 2022, 39(5): 1618-1630.]
doi: 10.13866/j.azr.2022.05.26 |
|
| [16] | Qadir M, Iqbal A, Hussain A, et al. Exploring plant-bacterial symbiosis for eco-friendly agriculture and enhanced resilience[J]. International Journal of Molecular Sciences, 2024, 25(22): 12198. |
| [17] | Morales-Cedeño L R, Orozco-Mosqueda M D C, Loeza-Lara P D, et al. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives[J]. Microbiological Research, 2021, 242: 126612. |
| [18] | Liu P, Li E, Ma Y, et al. Allelopathic potential of Haloxylon ammodendron against Syntrichia caninervis and comparative analysis of soil microbial differences between inside and outside of the bare patches under its canopies[J]. Applied Soil Ecology, 2024, 194: 105205. |
| [19] | Yang F, Lv G. Metabolomic analysis of the response of Haloxylon ammodendron and Haloxylon persicum to drought[J]. International Journal of Molecular Sciences, 2023, 24(10): 9099. |
| [20] |
伊帕热·帕尔哈提, 祖力胡玛尔·肉孜, 田永芝, 等. 荒漠植物内生菌多样性及其增强农作物抗旱和耐盐性的研究进展[J]. 生物技术通报, 2022, 38(12): 88-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1525 |
|
[Yipare Paerhati, ZulihumaerRouzi, Tian Yongzhi, et al. Research progress in diversity of endophytes microbial communities isolated from desert plants and their strengthening effects on drought and salt tolerance in crops[J]. Biotechnology Bulletin, 2022, 38(12): 88-99.]
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1525 |
|
| [21] | Figueredo E F, Cruz T A da, Almeida J R de, et al. The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system[J]. Microbiological Research, 2023, 266: 127218. |
| [22] | Zhang C, Cai K, Li M, et al. Plant-growth-promoting potential of PGPE isolated from Dactylis glomerata L.[J]. Microorganisms, 2022, 10(4): 731. |
| [23] | Lv N, Tao C, Ou Y, et al. Root-associated antagonistic Pseudomonas spp. contribute to soil suppressiveness against banana Fusarium wilt disease of banana[J]. Microbiology Spectrum, 2023, 11(2): e0352522. |
| [24] | SarvePalli M, Velidandi A, KorraPati N. Optimization of siderophore production in three marine bacterial isolates along with their heavy-metal chelation and seed germination potential determination[J]. Microorganisms, 2023, 11(12): 2873. |
| [25] | Wang Z, Li N, Xu Y, et al. Functional activity of endophytic bacteria G9H01 with high salt tolerance and anti-Magnaporthe oryzae that isolated from saline-alkali-tolerant rice[J]. The Science of the Total Environment, 2024, 926: 171822. |
| [26] | 张颖. 耐盐碱促生微生物的筛选、鉴定与应用初探[D]. 呼和浩特: 内蒙古农业大学, 2024. |
| [Zhang Ying. Screening, Identification and Application of Salt Alkali Tolerant and Promoting Microorganisms[D]. Hohhot: Inner Mongolia Agricultural University, 2024.] | |
| [27] | Yadav J, Srivastva A K, Singh R. Diversity of halotolerant endophytes from wheat (Triticum aestivum) and their response to mitigate salt stress in plants[J]. Biocatalysis and Agricultural Biotechnology, 2024, 56: 103000. |
| [28] |
Masmoudi F, Tounsi S, Dunlap C A, et al. Endophytic halotolerant Bacillus velezensis FMH2 alleviates salt stress on tomato plants by improving plant growth and altering physiological and antioxidant responses[J]. Plant Physiology and Biochemistry, 2021, 165: 217-227.
doi: 10.1016/j.plaphy.2021.05.025 pmid: 34058513 |
| [29] | Nguyen H T T, Das Bhowmik S, Long H, et al. Rapid accumulation of proline enhances salinity tolerance in australian wild rice Oryza australiensis domin[J]. Plants (Basel, Switzerland), 2021, 10(10): 2044. |
| [30] | 张青青, 董醇波, 邵秋雨, 等. 杜仲种子内生微生物群落组成及生态功能分析[J]. 林业科学研究, 2023, 36(2): 50-60. |
| [Zhang Qingqing, Dong Chunbo, Shao Qiuyu, et al. Community composition and ecological functional analysis of the endophytic microorganisms in Eucommia ulmoides seeds[J]. Forest Research, 2023, 36(2): 50-60.] | |
| [31] | Guo J, Ling N, Li Y, et al. Seed-borne, endospheric and rhizospheric core microbiota as predictors of plant functional traits across rice cultivars are dominated by deterministic processes[J]. New Phytologist, 2021, 230(5): 2047-2060. |
| [32] | Zhu X X, Shi L N, Shi H M, et al. Characterization of the Priestia megaterium ZS-3 siderophore and studies on its growth-promoting effects[J]. BMC Microbiology, 2025, 25(1): 133. |
| [33] | Chebotar V K, Zaplatkin A N, Chizhevskaya E P, et al. Phytohormone production by the endophyte Bacillus safensis TS3 increases plant yield and alleviates salt stress[J]. Plants (Basel, Switzerland), 2023, 13(1): 75. |
| [34] | Santoyo G, Guzmán-Guzmán P, Parra-Cota F I, et al. Plant growth stimulation by microbial consortia[J]. Agronomy, 2021, 11(2): 219. |
| [35] | Wang Z, Li Y, Zhuang L, et al. A rhizosphere-derived consortium of Bacillus subtilis and Trichoderma harzianum suppresses common scab of potato and increases yield[J]. Computational and Structural Biotechnology Journal, 2019, 17: 645-653. |
| [1] | 成艳琳, 王家源, 高广磊, 丁国栋, 张英, 赵珮杉, 朱宾宾. 呼伦贝尔沙地樟子松林土壤和根内真菌泛化种和特化种结构与功能特征[J]. 干旱区研究, 2025, 42(6): 1055-1066. |
| [2] | 张晶, 何爽, 张爱勤. 基于SSR分子标记的5个黄花补血草居群花型变异及其遗传效应[J]. 干旱区研究, 2025, 42(3): 499-510. |
| [3] | 赵雪梅, 马维伟, 张世虎, 常文华, 李广, 赵维军, 张玉. 民勤县公益林植物多样性与土壤因子的关系[J]. 干旱区研究, 2025, 42(1): 108-117. |
| [4] | 高海燕, 张胜男, 杨制国, 张雷, 黄海广, 闫德仁. 科尔沁沙地油松固沙林土壤真菌群落结构及功能[J]. 干旱区研究, 2025, 42(1): 118-126. |
| [5] | 苏宇琦, 马苏力娅, 李雨凡, 韦秋雨, 王洪峰, 李文军. 吉尔吉斯斯坦受威胁维管植物物种多样性及其分布格局[J]. 干旱区研究, 2024, 41(8): 1405-1412. |
| [6] | 崔国龙, 李强峰, 高英, 刘维军, 张梅. 青海大通北川河源区典型植被土壤微生物群落结构特征及影响因素[J]. 干旱区研究, 2024, 41(7): 1195-1206. |
| [7] | 宋达成, 马全林, 刘世权, 魏林源, 吴昊, 段晓峰, 郭树江. 民勤黏土沙障-人工梭梭林物种多样性及土壤水分变化特征[J]. 干旱区研究, 2024, 41(4): 618-628. |
| [8] | 朵海瑞, 傲云巴特尔, 吾健, 罗洪巍, 同德兴, 孔繁燕, 杨芳, 魏婷婷. 柴达木盆地可鲁克湖-托素湖自然保护区鸟类多样性[J]. 干旱区研究, 2024, 41(3): 521-526. |
| [9] | 吴明江, 邱娟, 郑凤, 凌孝波, 王新宇, 杨洋, 杨佳鑫, 刘立强. 新疆野果林灌木物种多样性与生态位研究[J]. 干旱区研究, 2024, 41(12): 2094-2109. |
| [10] | 李小锋, 惠婷婷, 李耀明, 毛洁菲, 王光宇, 范连连. 不同放牧管理方式对新疆山地草原植物群落特征的影响[J]. 干旱区研究, 2024, 41(1): 124-134. |
| [11] | 王理德, 宋达成, 李广宇, 赵赫然, 郑克文. 双龙沟矸石治理过程中植物群落演替及物种多样性研究[J]. 干旱区研究, 2023, 40(8): 1294-1303. |
| [12] | 李娟, 刘阳, 刘光琇, 程亮, 郭青云, 张威, 章高森. 鄯善库木塔格沙漠北缘细菌群落结构特征及影响因素[J]. 干旱区研究, 2023, 40(8): 1358-1368. |
| [13] | 王思淇, 张建军, 张彦勤, 赵炯昌, 胡亚伟, 李阳, 唐鹏, 卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151. |
| [14] | 乔静娟, 左小安, 岳平, 王国林, 王景圆, 王泽宙. 养分添加与干扰对荒漠草原群落组成及构建的影响[J]. 干旱区研究, 2023, 40(6): 958-970. |
| [15] | 他富源, 张弘扬, 勾文山, 马维新, 胡桂馨. 民勤温性荒漠草原拟步甲昆虫多样性调查[J]. 干旱区研究, 2023, 40(5): 840-848. |
|
||