干旱区研究 ›› 2024, Vol. 41 ›› Issue (10): 1708-1718.doi: 10.13866/j.azr.2024.10.09 cstr: 32277.14.j.azr.2024.10.09
梁元也1,2,3(), 范连连1,2,3, 马学喜1,2,3, 毛洁菲1,2,3, 惠婷婷1,2,3, 李耀明1,2,3()
收稿日期:
2024-03-06
修回日期:
2024-05-14
出版日期:
2024-10-15
发布日期:
2024-10-14
通讯作者:
李耀明. E-mail: lym@ms.xjb.ac.cn作者简介:
梁元也(1997-),女,硕士研究生,主要从事草地土壤研究. E-mail: liangyuanye20@mails.ucas.ac.cn
基金资助:
LIANG Yuanye1,2,3(), FAN Lianlian1,2,3, MA Xuexi1,2,3, MAO Jiefei1,2,3, HUI Tingting1,2,3, LI Yaoming1,2,3()
Received:
2024-03-06
Revised:
2024-05-14
Published:
2024-10-15
Online:
2024-10-14
摘要:
草地土壤碳氮磷含量及其生态化学计量的空间变异关系到草地生态系统的功能与稳定性。海拔、气候、土壤性质和植被如何影响新疆北部典型牧区额尔齐斯河(简称额河)流域土壤碳氮磷化学计量的空间格局尚不清楚。本文选取了额河流域六种主要草地类型的65个样点(0~10 cm、10~20 cm土层)进行研究。结果表明:(1) 高寒草甸、山地草甸、温性草甸草原有机碳(39.06~62.59 g·kg-1)、总氮含量(3.87~6.95 g·kg-1)以及六种草地类型的土壤总磷含量(0.53~1.59 g·kg-1)总体上高于中国土壤平均值(24.56 g·kg-1、1.88 g·kg-1、0.56 g·kg-1),而六种草地类型的土壤碳氮比(5.03~9.97)、碳磷比(7.50~52.38)以及温性草原、温性荒漠草原和温性荒漠土壤氮磷比(1.53~3.72)低于中国或全球土壤平均值(11.40、64.30、3.90)。(2) 土壤碳氮磷含量以及碳磷比、氮磷比随着海拔升高(328~2655 m)、降水量增加以及温度降低而显著增加,并且与植被特征、土壤理化性质有显著的相关性。随着海拔的升高,土壤有机碳、总氮含量与土壤碳磷比在土层间的差异逐渐增加。(3) 结构方程模型结果表明,海拔与气候因子对土壤碳氮磷含量及其生态化学计量的影响效应最高,海拔通过改变温度、降水、植被特征、土壤理化性质影响土壤碳氮磷含量,最终影响生态化学计量。未来应进一步开展气候变化对土壤碳氮磷及其生态化学计量影响的跨区域尺度研究。
梁元也, 范连连, 马学喜, 毛洁菲, 惠婷婷, 李耀明. 新疆北部六种草地类型土壤碳氮磷生态化学计量特征[J]. 干旱区研究, 2024, 41(10): 1708-1718.
LIANG Yuanye, FAN Lianlian, MA Xuexi, MAO Jiefei, HUI Tingting, LI Yaoming. Ecological stoichiometry of soil carbon, nitrogen, and phosphorus in six grassland types in northern Xinjiang[J]. Arid Zone Research, 2024, 41(10): 1708-1718.
表1
新疆额河流域六种草地类型土壤和植被概况"
高寒草甸 | 山地草甸 | 温性草甸草原 | 温性草原 | 温性荒漠草原 | 温性荒漠 | |
---|---|---|---|---|---|---|
土壤pH | 5.05±0.14d | 6.12±0.18c | 7.05±0.08b | 7.18±0.10b | 8.47±0.45a | 8.64±0.19a |
土壤容重/(g·cm-3) | 1.05±0.04d | 1.08±0.03d | 1.26±0.06c | 1.45±0.04b | 1.62±0.04a | 1.56±0.04a |
土壤体积含水量/% | 14.70±2.92a | 8.77±0.98b | 4.89±0.47c | 3.90±0.45c | 2.28±0.63c | 2.51±0.41c |
砂粒含量/% | 30.75±6.58d | 37.97±3.89d | 44.26±4.02c | 55.22±6.40b | 75.54±6.99a | 78.80±4.32a |
粉粒含量/% | 58.69±2.88a | 54.03±3.31ab | 48.21±3.42b | 37.71±5.36c | 20.45±5.87d | 16.85±3.60d |
黏粒含量/% | 10.56±0.87a | 8.00±0.69b | 7.53±0.64b | 7.07±1.09b | 4.01±1.16c | 4.03±0.74c |
地上生物量/(g·m-2) | 50.79±4.07b | 153.24±30.52a | 46.27±12.82b | 36.24±7.66bc | 27.91±9.36c | 27.51±6.52c |
植被盖度/% | 83.91±4.19a | 84.58±4.00a | 58.71±8.80b | 46.53±3.28c | 26.30±8.76d | 27.51±5.17d |
土壤质地 | 粉质壤土 | 粉质壤土 | 壤土 | 砂质壤土 | 砂土 | 砂土 |
土壤类型 | 黑钙土 | 黑钙土 | 栗钙土 | 栗钙土 | 栗钙土 | 栗钙土 |
表2
土壤碳氮磷含量及其生态化学计量与土壤理化性质、植被因子的相关性分析"
土壤有机碳/(g·kg-1) | 土壤总氮/(g·kg-1) | 土壤总磷/(g·kg-1) | 土壤碳氮比 | 土壤碳磷比 | 土壤氮磷比 | |
---|---|---|---|---|---|---|
土壤pH | -0.765*** | -0.788*** | -0.768*** | -0.190 | -0.571*** | -0.495*** |
土壤容重/(g·cm-3) | -0.878*** | -0.861*** | -0.657*** | -0.403*** | -0.764*** | -0.625*** |
土壤体积含水量/% | 0.686*** | 0.684*** | 0.606*** | 0.231 | 0.478*** | 0.397** |
砂粒含量/% | -0.789*** | -0.797*** | -0.606*** | -0.226 | -0.721*** | -0.645*** |
粉粒含量/% | 0.805*** | 0.813*** | 0.619*** | 0.228 | 0.737*** | 0.661*** |
黏粒含量/% | 0.632*** | 0.633*** | 0.478*** | 0.193 | 0.568*** | 0.502*** |
地上生物量/(g·m-2) | 0.527*** | 0.555*** | 0.385** | 0.111 | 0.460*** | 0.450*** |
植被盖度/% | 0.832*** | 0.846*** | 0.665*** | 0.277* | 0.704*** | 0.615*** |
[1] | 庞金凤, 张波, 王波, 等. 昆仑山中段北坡不同海拔梯度下土壤生态化学计量学特征[J]. 干旱区资源与环境, 2020, 34(1): 178-185. |
[Pang Jinfeng, Zhang Bo, Wang Bo, et al. Characteristics of soil ecological stoichiometry under different elevation on the north slope of Kunlun Mountains[J]. Journal of Arid Land Resources and Environment, 2020, 34(1): 178-185.] | |
[2] | Kumar A, Kumar M, Pandey R, et al. Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to Nature Based Climate Solutions[J]. Catena, 2021, 207: 105667. |
[3] | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. |
[Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon,nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947.] | |
[4] |
高海宁, 李彩霞, 孙小妹, 等. 祁连山北麓不同海拔土壤化学计量特征[J]. 中国沙漠, 2021, 41(1): 219-227.
doi: 10.7522/j.issn.1000-694X.2020.00125 |
[Gao Haining, Li Caixia, Sun Xiaomei, et al. Stoichiometry characteristics of soil at different altitudes in the Qilian Mountains[J]. Journal of Desert Research, 2021, 41(1): 219-227.]
doi: 10.7522/j.issn.1000-694X.2020.00125 |
|
[5] | Tian L M, Zhao L, Wu X D, et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland[J]. Science of the Total Environment, 2018, 622: 192-202. |
[6] | Huang L, Hu H, Bao W K, et al. Shifting soil nutrient stoichiometry with soil of variable rock fragment contents and different vegetation types[J]. Catena, 2023, 220: 106717. |
[7] | Xu H W, Qu Q, Li G W, et al. Impact of nitrogen addition on plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation[J]. Soil Biology & Biochemistry, 2022, 174: 108834. |
[8] | Chen L L, Wang K X, Baoyin T. Effects of grazing and mowing on vertical distribution of soil nutrients and their stoichiometry (C:N:P) in a semi-arid grassland of North China[J]. Catena, 2021, 206: 105507. |
[9] | Ren C J, Zhao F Z, Kang D, et al. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland[J]. Forest Ecology & Management, 2016, 376: 59-66. |
[10] | 李新星, 刘桂民, 吴小丽, 等. 马衔山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 生态学杂志, 2020, 39(3): 758-765. |
[Li Xinxing, Liu Guimin, Wu Xiaoli, et al. Elevational distribution of soil organic carbon,nitrogen and phosphorus contents and their ecological stoichiometry on Maxian Mountain[J]. Chinese Journal of Ecology, 2020, 39(3): 758-765.] | |
[11] |
Bi X, Li B, Nan B, et al. Characteristics of soil organic carbon and total nitrogen under various grassland types along a transect in a mountain-basin system in Xinjiang, China[J]. Journal of Arid Land, 2018, 10(4): 612-627.
doi: 10.1007/s40333-018-0006-1 |
[12] |
郁国梁, 马紫荆, 吕自立, 等. 海拔和植物群落共同调节天山中段南坡巴伦台地区天然草场土壤化学计量特征[J]. 草业学报, 2023, 32(9): 68-78.
doi: 10.11686/cyxb2022412 |
[Yu Guoliang, Ma Zijin, Lv Zili, et al. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China[J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78.]
doi: 10.11686/cyxb2022412 |
|
[13] | 张一帆, 武海涛, 刘吉平, 等. 长白山地土壤碳、氮、磷含量及生态化学计量垂直特征[J]. 环境生态学, 2023, 5(1): 7-15, 81. |
[Zhang Yifan, Wu Haitao, Liu Jiping, et al. Vertical characteristics of soil carbon, nitrogen and phosphorus contents and ecological stoichiometry in the Changbai Mountains[J]. Environmental Ecology, 2023, 5(1): 7-15, 81.] | |
[14] | Hu B F, Xie M D, Li H Y, et al. Stoichiometry of soil carbon, nitrogen, and phosphorus in farmland soils in southern China: Spatial pattern and related dominates[J]. Catena, 2022, 217: 106468. |
[15] | Xu Z W, Yu G R, Zhang X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biology & Biochemistry, 2017, 104: 152-163. |
[16] | 李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36(8): 2988-2996. |
[Li Ting, Deng Qiang, Yuan Zhiyou, et al. Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau[J]. Environmental Science, 2015, 36(8): 2988-2996.] | |
[17] | Zhang X R, Zhang W Q, Sai X, et al. Grazing altered soil aggregates, nutrients and enzyme activities in a Stipa kirschnii steppe of Inner Mongolia[J]. Soil & Tillage Research, 2022, 219: 105327. |
[18] | 张新时. 天山北部山地-绿洲-过渡带-荒漠系统的生态建设与可持续农业范式[J]. 植物学报, 2001, 43(12): 1294-1299. |
[Zhang Xinshi. Ecological restoration and sustainable agricultural paradigm of mountain-oasis-ecotone-desert system in the north of the Tianshan Mountains[J]. Acta Botanica Sinica, 2001, 43(12): 1294-1299.] | |
[19] | 阿斯太肯·居力海提, 董乙强, 李靖, 等. 禁牧对不同气候区蒿类荒漠植被和土壤养分及化学计量特征的影响[J]. 干旱区资源与环境, 2021, 35(11): 157-164. |
[Asitaiken Julihaiti, Dong Yiqiang, Li Jing, et al. Effects of grazing exclusion on nutrition and stoichiometry characteristics of Artemisia desert vegetation and soil[J]. Journal of Arid Land Resources and Environment, 2021, 35(11): 157-164.] | |
[20] | 杨琳. 新疆阿勒泰地区天然草地毒害草种群分布与危害及防控调查[D]. 杨凌: 西北农林科技大学, 2019. |
[Yang Ling. Investigation on Population Distribution,Harm and Control of Poisonous Grass on Natural Grassland in Altay Region of Xinjiang[D]. Yangling: Northwest Agriculture & Forestry University, 2019.] | |
[21] | 何海龙, 齐雁冰, 吕家珑, 等. 中国土壤质地分类系统的发展与建议修订方案[J]. 农业资源与环境学报, 2023, 40(3), 501-510. |
[He Hailong, Qi Yanbing, Lv Jialong, et al. Development and revision of the Chinese soil texture classification system[J]. Journal of Agricultural Resources and Environment, 2023, 40(3): 501-510.] | |
[22] | Wrb I W G. World Reference Base for Soil Resources 2014, update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps[M]. World Soil Resources Reports No. 106. FAO, Rome, 2015. |
[23] |
李娅丽, 柳小妮, 张德罡, 等. 陇中温性草原不同草地型植被特征和土壤理化性质研究[J]. 草地学报, 2023, 31(11): 3405-3414.
doi: 10.11733/j.issn.1007-0435.2023.11.019 |
[Li Yali, Liu Xiaoni, Zhang Degang, et al. Vegetation characteristics and soil physicochemical properties of different grassland types of temperate steppe in Longzhou[J]. Acta Agrestia Sinica, 2023, 31(11): 3405-3414.]
doi: 10.11733/j.issn.1007-0435.2023.11.019 |
|
[24] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. |
[Bao Shidan. Agrochemical Analysis of Soil[M]. Beijing: China Agriculture Press, 2005.] | |
[25] | Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139-151. |
[26] | Lu J N, Feng S, Wang S K, et al. Patterns and driving mechanism of soil organic carbon, nitrogen, and phosphorus stoichiometry across northern China’s desert-grassland transition zone[J]. Catena, 2023, 220: 106695. |
[27] |
Zhang K, Su Y Z, Yang R. Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and biogeographic factors across the desert ecosystem of Hexi Corridor, northwestern China[J]. Journal of Soils and Sediments, 2019, 19(1): 49-57.
doi: 10.1007/s11368-018-2007-2 |
[28] | Chai H, Yu G R, He N P, et al. Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems[J]. Chinese Geographical Science, 2015, 25(5): 549-560. |
[29] |
李敏, 孙杰, 陈雪, 等. 荒漠植物叶片-土壤化学计量及植物内稳态特征[J]. 干旱区研究, 2024, 41(1): 104-113.
doi: 10.13866/j.azr.2024.01.10 |
[Li Min, Sun Jie, Chen Xue, et al. Leaf-soil stoichiometry and homeostasis characteristics of desert-related plants[J]. Arid Zone Research, 2024, 41(1): 104-113.]
doi: 10.13866/j.azr.2024.01.10 |
|
[30] |
陶冶, 吴甘霖, 刘耀斌, 等. 古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素[J]. 中国沙漠, 2017, 37(2): 305-314.
doi: 10.7522/j.issn.1000-694X.2016.00087 |
[Tao Ye, Wu Ganlin, Liu Yaobin, et al. Soil stoichiometry and their influencing factors in typical shrub communities in the Gurbantunggut Desert,China[J]. Journal of Desert Research, 2017, 37(2): 305-314.]
doi: 10.7522/j.issn.1000-694X.2016.00087 |
|
[31] | Heuck C, Weig A, Spohn M. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus[J]. Soil Biology & Biochemistry, 2015, 85: 119-129. |
[32] |
王健铭, 王文娟, 李景文, 等. 中国西北荒漠区植物物种丰富度分布格局及其环境解释[J]. 生物多样性, 2017, 25(11): 1192-1201.
doi: 10.17520/biods.2017149 |
[Wang Jianming, Wang Wenjuan, Li Jingwen, et al. Biogeographic patterns and environmental interpretation of plant species richness in desert regions of Northwest China[J]. Biodiversity Science, 2017, 25(11): 1192-1201.]
doi: 10.17520/biods.2017149 |
|
[33] | Luo Y, Peng Q W, Li K H, et al. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China[J]. Catena, 2021, 199: 105100. |
[34] | Feyissa A, Raza S T, Cheng X. Soil carbon stabilization and potential stabilizing mechanisms along elevational gradients in alpine forest and grassland ecosystems of Southwest China[J]. Catena, 2023, 229: 107210. |
[35] |
王甜, 徐姗, 赵梦颖, 等. 内蒙古不同类型草原土壤团聚体含量的分配及其稳定性[J]. 植物生态学报, 2017, 41(11): 1168-1176.
doi: 10.17521/cjpe.2017.0220 |
[Wang Tian, Xu Shan, Zhao Mengying, et al. Allocation of mass and stability of soil aggregate in different types of Nei Mongol grasslands[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1168-1176.]
doi: 10.17521/cjpe.2017.0220 |
|
[36] | 刘爱琴, 严加亮, 侯晓龙, 等. 武夷山自然保护区不同海拔土壤磷素的分布规律[J]. 森林与环境学报, 2015, 35(4): 310-316. |
[Liu Aiqin, Yan Jialiang, Hou Xiaolong, et al. Heterogeneity distribution of soil phosphorus in Wuyishan Nature Reserve[J]. Journal of Forest & Environment, 2015, 35(4): 310-316.] | |
[37] | Cui Y X, Wang X, Zhang X C, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region[J]. Soil Biology & Biochemistry, 2020, 147: 107814. |
[38] | Zhou Z H, Wang C K, Luo Y Q. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11(1): 3072. |
[39] | Du H Q, Li S, Webb N P, et al. Soil organic carbon (SOC) enrichment in aeolian sediments and SOC loss by dust emission in the desert steppe, China[J]. Science of the Total Environment, 2021, 798: 149189. |
[40] | Li Y Q, Ma J W, Xiao C, et al. Effects of climate factors and soil properties on soil nutrients and elemental stoichiometry across the Huang-Huai-Hai River Basin, China[J]. Journal of Soils and Sediments, 2020, 20(4): 1970-1982. |
[1] | 董鹏, 任悦, 高广磊, 丁国栋, 张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征[J]. 干旱区研究, 2024, 41(8): 1354-1363. |
[2] | 杨晓玲, 周华, 陈静, 赵慧华, 吴雯. 河西走廊东部不同气候态气温变化及其对气候评价的影响[J]. 干旱区研究, 2024, 41(7): 1089-1098. |
[3] | 唐维春, 刘小娥, 苏世平, 田晓娟, 唐庆童, 张婧. 甘肃兴隆山不同演替阶段群落土壤氮素矿化对温度的响应[J]. 干旱区研究, 2024, 41(6): 984-997. |
[4] | 赵立超, 张成福, 贺帅, 苗林, 冯霜, 潘思涵. 复杂山区地表温度模拟及影响——以内蒙古大青山为例[J]. 干旱区研究, 2024, 41(5): 765-775. |
[5] | 安宁, 郭彬, 张东梅, 杨淇越, 罗维成. 河西走廊中段荒漠植被组成及土壤养分空间分布特征[J]. 干旱区研究, 2024, 41(3): 432-443. |
[6] | 白丽丽, 王文颖, 德却拉姆, 刘艳方, 邓艳芳. 祁连山典型植被土壤碳、氮、磷含量及生态化学计量特征的垂直变化[J]. 干旱区研究, 2024, 41(3): 444-455. |
[7] | 杨雅青, 张翀, 张婕, 王玉丹. 关中地区土壤干湿变化及对气候的响应[J]. 干旱区研究, 2024, 41(2): 261-271. |
[8] | 李永广, 苑广辉. 青海湖流域不同下垫面类型对地表温度的生物物理影响[J]. 干旱区研究, 2024, 41(1): 24-35. |
[9] | 曹秭琦, 路战远, 任永峰, 赵小庆, 王建国, 侯智慧, 韩云飞, 王登云, 尚学燕, 段锐. 不同施氮水平对油莎豆农田土壤养分表观平衡和块茎产量的影响[J]. 干旱区研究, 2024, 41(1): 71-79. |
[10] | 张晓敏, 张东梅, 张伟. 人类活动对额尔齐斯河流域碳储量的影响[J]. 干旱区研究, 2023, 40(8): 1333-1345. |
[11] | 热依拉穆·麦麦提吐尔逊, 哈里布努尔, 艾沙江·阿不都沙拉木. 异质生境下黑果枸杞异形果实的种子休眠及萌发特性[J]. 干旱区研究, 2023, 40(7): 1152-1163. |
[12] | 张彤, 刘静, 韩叙, 童郁强, 魏亚伟. 放牧对沙地樟子松林土壤养分及微生物群落的影响[J]. 干旱区研究, 2023, 40(2): 194-202. |
[13] | 回嵘, 谭会娟, 黄磊, 李新荣. 柴达木盆地盐渍化土壤养分和酶活性特征[J]. 干旱区研究, 2023, 40(11): 1776-1784. |
[14] | 张志高, 孙梓欣, 张秀丽, 郭可欣, 李卓娅, 郝海姣, 蔡茂堂. 1960—2020年黄河流域气候生长季时空演变及成因分析[J]. 干旱区研究, 2023, 40(10): 1537-1546. |
[15] | 邬晓丹,罗敏,孟凡浩,萨楚拉,尹超华,包玉海. 气候暖湿化背景下新疆极端气候事件时空演变特征分析[J]. 干旱区研究, 2022, 39(6): 1695-1705. |
|