干旱区研究 ›› 2023, Vol. 40 ›› Issue (11): 1776-1784.doi: 10.13866/j.azr.2023.11.07 cstr: 32277.14.j.azr.2023.11.07
收稿日期:
2023-02-22
修回日期:
2023-06-25
出版日期:
2023-11-15
发布日期:
2023-12-01
作者简介:
回嵘(1985-),女,副研究员,主要从事干旱区土壤生态学研究. E-mail: 基金资助:
HUI Rong(),TAN Huijuan,HUANG Lei,LI Xinrong()
Received:
2023-02-22
Revised:
2023-06-25
Published:
2023-11-15
Online:
2023-12-01
摘要:
为探讨柴达木盆地不同程度盐渍化土壤养分和酶活性特征,沿察尔汗盐湖至昆仑山方向依次选择5个样点,分析土壤养分和酶活性特征及其二者的相关性。结果表明:除土壤全钾外,土壤盐渍化程度、土壤深度及其两者交互作用对土壤养分含量及土壤酶活性的影响均达到显著水平(P<0.05)。在盐渍化程度较低的土壤,养分有效性(速效钾除外)和酶活性较高,且随土壤深度的增加而降低。以有机碳和蔗糖酶为例,在盐渍化程度最低的S5样地中含量为13.83 g·kg-1和21.01 mg·g-1·d-1(0~5 cm)、12.85 g·kg-1和19.29 mg·g-1·d-1(5~10 cm)、9.83 g·kg-1 和 12.19 mg·g-1·d-1(10~20 cm),显著高于盐渍化程度最高S1中的8.56 g·kg-1 和1.41 mg·g-1·d-1(0~5 cm)、8.40 g·kg-1 和1.30 mg·g-1·d-1(5~10 cm)、8.33 g·kg-1 和1.26 mg·g-1·d-1(10~20 cm)。相关性分析表明,在盐渍化程度较低样地,土壤酶活性与大多数土壤养分之间呈显著或极显著正相关性(P<0.05)。因此,柴达木盆地不同盐渍化程度土壤养分和酶活性特征存在明显差异,土壤盐渍化会降低土壤养分的有效性,抑制土壤酶的活性,降低土壤中有机物质的分解速率。
回嵘, 谭会娟, 黄磊, 李新荣. 柴达木盆地盐渍化土壤养分和酶活性特征[J]. 干旱区研究, 2023, 40(11): 1776-1784.
HUI Rong, TAN Huijuan, HUANG Lei, LI Xinrong. Characteristics of nutrient and enzyme activity in salt-affected soils of the Qaidam Basin[J]. Arid Zone Research, 2023, 40(11): 1776-1784.
表1
采样点基本情况"
样点 | 经纬度 | 海拔/m | 盐壳厚度/cm | 电导率/(dS·m-1) | pH | 植被盖度/% |
---|---|---|---|---|---|---|
S1 | 36°41′02″ N,95°04′40″ E | 2719 | 30±4 | 23.9±1.2 | 8.73±0.038 | 0±0 |
S2 | 36°39′04″ N,95°03′27″ E | 2720 | 25±2 | 23.4±1.0 | 8.71±0.035 | 20±3 |
S3 | 36°31′41″ N,94°58′12″ E | 2750 | 3±1 | 17.7±4.0 | 8.45±0.026 | 45±5 |
S4 | 35°51′41″ N,94°21′06″ E | 3811 | 0±0 | 6.5±0.2 | 8.54±0.048 | 30±5 |
S5 | 35°44′19″ N,94°15′45″ E | 4123 | 0±0 | 6.2±0.4 | 8.58±0.061 | 20±4 |
表2
土壤盐渍化程度(S)及土壤深度(D)对土壤养分含量影响的双因素方差分析结果"
土壤养分含量 | 土壤盐渍化程度(S) | 土壤深度(D) | S×D | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
SOC | 69.000 | <0.001 | 30.998 | <0.001 | 5.894 | <0.001 | ||
TN | 124.843 | <0.001 | 8.767 | <0.01 | 3.543 | <0.01 | ||
TP | 63.649 | <0.001 | 90.459 | <0.001 | 6.958 | <0.001 | ||
TK | 138.802 | <0.001 | 6.277 | <0.01 | 0.095 | >0.05 | ||
AP | 409.084 | <0.001 | 1086.806 | <0.001 | 214.806 | <0.001 | ||
AK | 705.333 | <0.001 | 335.737 | <0.001 | 42.084 | <0.001 |
表4
不同盐渍化土壤酶活性与土壤养分的相关性分析"
样点 | 酶活性 | 土壤养分含量 | |||||
---|---|---|---|---|---|---|---|
SOC | TN | TP | TK | AP | AK | ||
S1 | CAT | 0.234 | 0.354 | 0.305 | 0.501 | 0.561 | 0.788* |
URE | 0.476 | 0.707* | 0.045 | 0.855* | 0.410 | 0.160 | |
SUC | 0.475 | 0.174 | 0.555 | 0.222 | 0.032 | 0.443 | |
DHA | 0.039 | -0.060 | 0.508 | 0.417 | 0.608 | 0.885** | |
S2 | CAT | 0.205 | -0.225 | 0.418 | 0.553 | 0.899** | 0.702* |
URE | 0.086 | -0.131 | 0.029 | 0.234 | 0.464 | 0.368 | |
SUC | -0.025 | 0.025 | 0.228 | 0.131 | 0.335 | 0.314 | |
DHA | 0.361 | -0.106 | 0.658 | 0.525 | 0.901** | 0.884** | |
S3 | CAT | 0.586 | 0.681* | 0.860** | 0.699* | 0.965** | 0.970** |
URE | 0.630 | 0.823** | 0.909** | 0.513 | 0.794* | 0.868** | |
SUC | 0.739* | 0.716* | 0.876** | 0.549 | 0.807** | 0.908** | |
DHA | 0.702* | 0.660 | 0.776* | 0.724* | 0.804** | 0.910** | |
S4 | CAT | 0.560 | 0.730* | 0.772* | 0.695* | 0.842** | 0.803** |
URE | 0.835** | 0.766* | 0.896** | 0.780* | 0.879** | 0.879** | |
SUC | 0.746* | 0.690* | 0.962** | 0.648 | 0.975** | 0.926** | |
DHA | 0.880** | 0.616 | 0.903** | 0.617 | 0.891** | 0.939** | |
S5 | CAT | 0.902** | 0.624 | 0.556 | 0.656 | 0.627 | 0.767* |
URE | 0.954** | 0.837** | 0.764* | 0.582 | 0.733* | 0.858** | |
SUC | 0.933** | 0.710* | 0.651 | 0.758* | 0.623 | 0.756* | |
DHA | 0.740* | 0.797* | 0.760* | 0.612 | 0.831** | 0.836** |
[1] | 张体彬, 展小云, 冯浩. 盐碱地土壤酶活性研究进展和展望[J]. 土壤通报, 2017, 48(2): 495-500. |
[Zhang Tibin, Zhan Xiaoyun, Feng Hao. Research advance and prospect of soil enzymes activities in saline-alkali soils[J]. Chinese Journal of Soil Science, 2017, 48(2): 495-500.] | |
[2] |
Qadir M, Ghafoor A, Murtaza G. Amelioration strategies for saline soils: A review[J]. Land Degradation and Development, 2000, 11: 501-521.
doi: 10.1002/(ISSN)1099-145X |
[3] |
Tripathi S, Kumari S, Chakraborty A, et al. Microbial biomass and its activities in salt-affected coastal soils[J]. Biology and Fertility of Soils, 2006, 42: 273-277.
doi: 10.1007/s00374-005-0037-6 |
[4] | 武海雯, 杨秀艳, 王计平, 等. 沙枣改善盐碱土壤养分的研究进展[J]. 生态学杂志, 2019, 38(11): 3527-3534. |
[Wu Haiwen, Yang Xiuyan, Wang Jiping, et al. A review on the improvement of salt-affected soil nutrients by Elaeagnus angustifolia L[J]Chinese Journal of Ecology, 2019, 38(11): 3527-3534.] | |
[5] | 余冬梅, 祁兆鑫, 胡夏嵩, 等. 柴达木盆地尕斯库勒湖区盐生植物改良土壤盐渍化效应及其贡献评价[J]. 盐湖研究, 2020, 28(4): 91-101. |
[Yu Dongmei, Qi Zhaoxin, Hu Xiasong, et al. Effects and contribution assessment of halophytes in soil salinization improvement of Gas Hure Lake region in Qaidam Basin[J]. Journal of Salt Lake Research, 2020, 28(4): 91-101.] | |
[6] | 许华, 何明珠, 孙岩. 干旱荒漠区土壤酶活性对降水调控的响应[J]. 兰州大学学报(自然科学版), 2018, 54(6): 790-797. |
[Xu Hua, He Mingzhu, Sun Yan. Response of soil enzyme activities to precipitation regulation in arid desert areas[J]. Journal of Lanzhou University (Natural Sciences), 2018, 54(6): 790-797.] | |
[7] | 景宇鹏, 李跃进, 年佳乐, 等. 土默川平原不同盐渍化土壤酶活性特征的研究[J]. 生态环境学报, 2013, 22(9): 1538-1543. |
[Jing Yupeng, Li Yuejin, Nian Jiale, et al. Enzymatic activity of different salt affected soils in Tumochuan Plain[J]. Ecology and Environmental Sciences, 2013, 22(9): 1538-1543.] | |
[8] | Zhang T B, Wan S Q, Kang Y H, et al. Urease activity and its relationships to soil physiochemical properties in a highly saline-sodic soil[J]. Journal of Soil Science and Plant Nutrition, 2014, 14: 304-315. |
[9] | 李凤霞, 王学琴, 郭永忠, 等. 银川平原不同类型盐渍化土壤酶活性及其与土壤养分间相关分析研究[J]. 干旱区资源与环境, 2012, 26(7): 121-126. |
[Li Fengxia, Wang Xueqin, Guo Yongzhong, et al. Study of soil enzymes activity and their correlation with soil nutrients in different types of saline-alkali soils in Yinchuan Plain of Ningxia[J]. Journal of Arid Land Resources and Environment, 2012, 26(7): 121-126.] | |
[10] |
Jia S F, Zhu W B, Lv A F, et al. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 2011, 115: 3069-3079.
doi: 10.1016/j.rse.2011.06.009 |
[11] | 李霞, 崔霞, 何晓菲, 等. 柴达木盆地水源涵养功能时空特征分析[J]. 草业科学, 2022, 39(4): 660-671. |
[Li Xia, Cui Xia, He Xiaofei, et al. Analyses of spatial and temporal characteristics of water conservation function in Qaidam Basin[J]. Pratacultural Science, 2022, 39(4): 660-671.] | |
[12] | 严小功, 张金旭, 杨占云, 等. 柴达木盆地盐碱地现状及改良措施[J]. 农业与技术, 2020, 40(7): 18-20. |
[Yan Xiaogong, Zhang Jinxu, Yang Zhanyun, et al. Present situation and the improvement measure of saline-alkali land in Qaidam Basin[J]. Agriculture and Technology, 2020, 40(7): 18-20.] | |
[13] | 韩光, 袁小龙, 韩积斌, 等. 察尔汗盐湖霍布逊区段资源开采过程中储卤层系统变化特征研究[J]. 地球学报, 2022, 43(5): 279-286. |
[Han Guang, Yuan Xiaolong, Han Jibin, et al. Comparative analysis on the characteristic changes of the brine reservoir system before and after exploration of the Qarhan Salt Lake (Huobuxun Area)[J]. Acta Geoscientica Sinica, 2022, 43(5): 279-286.] | |
[14] | 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978. |
[ Institute of Soil Science, Chinese Academy of Sciences. Analysis of Soil Physico-chemical Properties[M]. Shanghai: Shanghai Science and Technology Press, 1978.] | |
[15] | 关松荫. 土壤酶学研究方法[M]. 北京: 中国农业科技出版社, 1986. |
[Guan Songyin. Research Methods of Soil Enzymology[M]. Beijing: China Agriculture Science and Technique Press, 1986.] | |
[16] | 吴杰, 李向鹏, 陈鑫, 等. 重庆市涪陵区植烟土壤养分的适宜性评价及变异分析[J]. 土壤, 2020, 52(1): 106-112. |
[Wu Jie, Li Xiangpeng, Chen Xin, et al. Assessment of feasibility and variation analysis of nutrient contents in tobacco-growing soil in Fuling County, Chongqing[J]. Soils, 2020, 52(1): 106-112.] | |
[17] | 朱海强, 李艳红, 李发东. 近10年艾比湖湿地不同植物群落土壤水分-盐分-养分变化特征[J]. 西北植物学报, 2018, 38(3): 535-543. |
[Zhu Haiqiang, Li Yanhong, Li Fadong. Characteristics of soil moisture, salinity and nutrients in different plant communities of Ebinur Lake wetland during the past decade[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(3): 535-543.] | |
[18] | 陈孔飞, 张仁陟, 蔡立群, 等. 盐渍化对沙枣林土壤养分和酶活性的影响[J]. 国土与自然资源研究, 2020, 4(5): 60-64. |
[Chen Kongfei, Zhang Renzhi, Cai Liqun, et al. Effects of salinization on soil nutrients and enzyme activities in Elaeagnus angustifolia forest[J]. Territory & Natural Resources Study, 2020, 4(5): 60-64.] | |
[19] |
Singh K. Microbial and enzyme activities of saline and sodic soils[J]. Land Degradation and Development, 2015, 27: 706-718.
doi: 10.1002/ldr.v27.3 |
[20] | 周利颖, 李瑞平, 苗庆丰, 等. 内蒙古河套灌区紧邻排干沟土壤盐渍化与肥力特征分析[J]. 干旱区研究, 2021, 38(1): 114-122. |
[Zhou Liying, Li Ruiping, Miao Qingfeng, et al. Characteristics of salinization and fertility of saline-alkali soil adjacent to drain-age ditch in Hetao irrigation area of Inner Mongoli[J]. Arid Zone Research, 2021, 38(1): 114-122.] | |
[21] | 李瑞琴, 刘成林, 焦鹏程, 等. 现代盐湖低品位固体钾盐溶矿数值模拟研究——以察尔汗盐湖别勒滩矿区为例[J]. 地质学报, 2021, 95(7): 2150-2159. |
[Li Ruiqin, Liu Chenglin, Jiao Pengcheng, et al. Numerical simulation analysis on potash dissolution extraction from low-grade solid potash ore in modern Salt Lake: A case study from Bieletan mining area in the Qarhan salt Lake[J]. Acta Geologica Sinica, 2021, 95(7): 2150-2159.] | |
[22] | 李海强, 郭成久, 蔡楚雄, 等. 水土保持措施对坡耕地土壤养分时空差异影响[J]. 土壤通报, 2017, 48(3): 707-714. |
[Li Haiqiang, Guo Chengjiu, Cai Chuxiong, et al. Effect of soil and water conservation measures on temporal and spatial variability of soil nutrients in sloping farmland[J]. Chinese Journal of Soil Science, 2017, 48(3): 707-714.] | |
[23] |
朱玉荷, 肖虹, 王冰, 等. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349.
doi: 10.17521/cjpe.2021.0266 |
[Zhu Yuhe, Xiao Hong, Wang Bing, et al. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus along soil depths in response to climatic variables in grasslands on the Mongolia Plateau[J]. Chinese Journal of Plant Ecology, 2022, 46(3): 340-349.]
doi: 10.17521/cjpe.2021.0266 |
|
[24] | 王雅, 刘爽, 郭晋丽, 等. 黄土高原不同植被类型对土壤养分、酶活性及微生物的影响[J]. 水土保持通报, 2018, 38(1): 62-68. |
[Wang Ya, Liu Shuang, Guo Jinli, et al. Influence of different vegetation types on soil nutrients, enzyme activities and microbial diversities in Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2018, 38(1): 62-68.] | |
[25] | 曹婷婷, 郭振. 土壤酶活性与土壤肥力关系的研究进展[J]. 安徽农业科学, 2019, 9(6): 444-448. |
[Cao Tingting, Guo Zhen. Research advance of the relationship between soil enzyme activity and soil fertility[J]. Journal of Anhui Agricultural Sciences, 2019, 9(6): 444-448.] | |
[26] | 高转琴, 王丹, 牛灵安, 等. 冀南平原盐渍化改造区土壤过氧化氢酶活性变化研究[J]. 土壤通报, 2019, 50(6): 1434-1441. |
[Gao Zhuanqin, Wang Dan, Niu Ling’an, et al. Catalase activities in salinized rehabilitation area of the southern Hebei plain[J]. Chinese Journal of Soil Science, 2019, 50(6): 1434-1441.] | |
[27] |
赵雅姣, 刘晓静, 吴勇, 等. 豆禾牧草间作根际土壤养分、酶活性及微生物群落特征[J]. 中国沙漠, 2020, 40(3): 219-228.
doi: 10.7522/j.issn.1000-694X.2020.00019 |
[Zhao Yajiao, Liu Xiaojing, Wu Yong, et al. Rhizosphere soil nutrients, enzyme activities and microbial community characteristics in legume-cereal intercropping system in Northwest China[J]. Journal of Desert Research, 2020, 40(3): 219-228.]
doi: 10.7522/j.issn.1000-694X.2020.00019 |
|
[28] |
张志山, 杨贵森, 吕星宇, 等. 荒漠生态系统C、N、P生态化学计量研究进展[J]. 中国沙漠, 2022, 42(1): 48-56.
doi: 10.7522/j.issn.1000-694X.2021.00198 |
[Zhang Zhishan, Yang Guisen, Lv Xingyu, et al. Research progresses in ecological stoichiometry of C, N and P in desert ecosystems[J]. Journal of Desert Research, 2022, 42(1): 48-56.]
doi: 10.7522/j.issn.1000-694X.2021.00198 |
|
[29] | 郭丽娜. 科尔沁盐渍化草地土壤生物活性及微生物多样性研究[D]. 辽宁: 东北大学, 2012. |
[Guo Lina. Soil Biological Activity and Microbial Diversity of Salinized Horqin Grassland[J]. Liaoning: Northeastern University, 2012.] | |
[30] |
Rath K M, Maheshwari A, Bengtson P, et al. Comparative toxicities of salts on microbial processes in soil[J]. Applied and Environmental Microbiology, 2016, 82: 2012-2020.
doi: 10.1128/AEM.04052-15 pmid: 26801570 |
[31] |
马文文, 姚拓, 靳鹏, 等. 荒漠草原2种植物群落土壤微生物及土壤酶特征[J]. 中国沙漠, 2014, 34(1): 176-183.
doi: 10.7522/j.issn.1000-694X.2013.00297 |
[Ma Wenwen, Yao Tuo, Jin Peng, et al. Characteristics of microorganisms and enzyme activity under two plant communities in desert steppe[J]. Journal of Desert Research, 2014, 34(1): 176-183.]
doi: 10.7522/j.issn.1000-694X.2013.00297 |
|
[32] |
马晓俊, 李云飞. 腾格里沙漠东南缘植被恢复过程中土壤微生物量及酶活性[J]. 中国沙漠, 2019, 39(6): 159-166.
doi: 10.7522/j.issn.1000-694X.2019.00059 |
[Ma Xiaojun, Li Yunfei. Soil microbial biomass and enzyme activities during revegetation process in the southeastern fringe of the Tengger Desert[J]. Journal of Desert Research, 2019, 39(6): 159-166.]
doi: 10.7522/j.issn.1000-694X.2019.00059 |
|
[33] |
景宇鹏, 李跃进, 姚一萍, 等. 盐渍化土壤酶活性及其与微生物、理化因子的关系[J]. 中国农业科技导报, 2016, 18(2): 128-138.
doi: 10.13304/j.nykjdb.2015.407 |
[Jing Yupeng, Li Yuejin, Yao Yiping, et al. Enzyme activities of saline-alkali soil and its relationship with soil microbial biomass and physicochemical factor[J]. Journal of Agricultural Science and Technology, 2016, 18(2): 128-138.]
doi: 10.13304/j.nykjdb.2015.407 |
|
[34] |
An S S, Huang Y M, Zheng F L. Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau, Northwest China[J]. Applied Soil Ecology, 2009, 41: 286-292.
doi: 10.1016/j.apsoil.2008.12.001 |
[35] |
Li X J, Yang H T, Shi W L, et al. Afforestation with xerophytic shrubs accelerates soil net nitrogen nitrification and mineralization in the Tengger Desert, Northern China[J]. Catena, 2018, 169: 11-20.
doi: 10.1016/j.catena.2018.05.026 |
[36] | 丁菡, 胡海波, 王人潮. 半干旱区土壤酶活性与其理化及微生物的关系[J]. 南京林业大学学报(自然科学版), 2007, 31(2): 13-19. |
[Ding Han, Hu Haibo, Wang Renchao. The relationships between soil enzyme activity and soil physical chemical properties or microbial biomass in semi-arid area[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2007, 31(2): 13-19.] | |
[37] | 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721-729. |
[Bao Jianping, Yuan Gensheng, Dong Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil[J]. Acta Pedologica Sinica, 2020, 57(3): 721-729.] |
[1] | 张彬, 郑新军, 王玉刚, 唐立松, 李彦, 杜澜, 田胜川. 1990—2022年天山北坡地区不同开垦年限耕层土壤盐分变化[J]. 干旱区研究, 2024, 41(9): 1435-1445. |
[2] | 张群慧, 常亮, 顾小凡, 王倩, 马卯楠, 李小等, 段瑞, 犹香智. 1979—2020年柴达木盆地人体舒适度指数时空变化及趋势分析[J]. 干旱区研究, 2024, 41(8): 1300-1308. |
[3] | 郑柳娜, 江红南, 孙梦婷. 基于遥感影像的新疆渭干河—库车河三角洲土壤水盐与植被覆盖度的关系[J]. 干旱区研究, 2024, 41(7): 1131-1139. |
[4] | 洪国军, 谢俊博, 张灵, 范振岐, 喻彩丽, 付仙兵, 李旭. 基于多光谱影像的阿拉尔垦区棉田土壤盐分反演[J]. 干旱区研究, 2024, 41(5): 894-904. |
[5] | 安宁, 郭彬, 张东梅, 杨淇越, 罗维成. 河西走廊中段荒漠植被组成及土壤养分空间分布特征[J]. 干旱区研究, 2024, 41(3): 432-443. |
[6] | 梁元也, 范连连, 马学喜, 毛洁菲, 惠婷婷, 李耀明. 新疆北部六种草地类型土壤碳氮磷生态化学计量特征[J]. 干旱区研究, 2024, 41(10): 1708-1718. |
[7] | 曹秭琦, 路战远, 任永峰, 赵小庆, 王建国, 侯智慧, 韩云飞, 王登云, 尚学燕, 段锐. 不同施氮水平对油莎豆农田土壤养分表观平衡和块茎产量的影响[J]. 干旱区研究, 2024, 41(1): 71-79. |
[8] | 张彤, 刘静, 韩叙, 童郁强, 魏亚伟. 放牧对沙地樟子松林土壤养分及微生物群落的影响[J]. 干旱区研究, 2023, 40(2): 194-202. |
[9] | 牛子路, 王磊, 齐拓野, 张伊婧, 申建香, 杨竹青, 王恩田, 蒋淑汀. 宁夏红寺堡扬黄灌区土壤盐渍化特征[J]. 干旱区研究, 2023, 40(11): 1785-1796. |
[10] | 肖森天, 依力亚斯江·努尔麦麦提, 努尔比耶·穆合塔尔, 赵静, 阿迪莱·阿卜来提. 基于光学和雷达多源遥感的于田绿洲土壤盐渍化时空分析[J]. 干旱区研究, 2023, 40(1): 59-68. |
[11] | 郭晓雯,刘佳炜,郑志玉,闵伟. 全生育期咸水滴灌对土壤盐分累积和棉花生长的影响[J]. 干旱区研究, 2022, 39(6): 1952-1965. |
[12] | 杨海娇,魏加华,任倩慧. 柴达木盆地典型流域地表水-地下水转化关系及水化学特征[J]. 干旱区研究, 2022, 39(5): 1543-1554. |
[13] | 谢明君,李广,马维伟,刘帅楠,常海刚,杜佳囝,丁宁. 水分对河西青贮玉米土壤化学计量比及稳态性的影响[J]. 干旱区研究, 2022, 39(4): 1312-1321. |
[14] | 文广超,李兴,吴冰洁,王晓鹤,谢洪波. 基于Landsat影像的柴达木盆地湖泊提取方法[J]. 干旱区研究, 2022, 39(3): 774-786. |
[15] | 苏春利,纪倩楠,陶彦臻,谢先军,潘洪捷. 河套灌区西部土壤盐渍化分异特征及其主控因素[J]. 干旱区研究, 2022, 39(3): 916-923. |
|