干旱区研究 ›› 2024, Vol. 41 ›› Issue (6): 984-997.doi: 10.13866/j.azr.2024.06.08 cstr: 32277.14.j.azr.2024.06.08
唐维春1(), 刘小娥1, 苏世平1(), 田晓娟2, 唐庆童1, 张婧3
收稿日期:
2023-08-10
修回日期:
2024-01-16
出版日期:
2024-06-15
发布日期:
2024-07-03
作者简介:
唐维春(1994-),女,硕士研究生,主要研究方向为水土保持与荒漠化防治. E-mail: mnbvcxzgfs@163.com
基金资助:
TANG Weichun1(), LIU Xiao’e1, SU Shiping1(), TIAN Xiaojuan2, TANG Qingtong1, ZHANG Jing3
Received:
2023-08-10
Revised:
2024-01-16
Published:
2024-06-15
Online:
2024-07-03
摘要:
土壤氮素矿化是土壤中氮素循环的关键过程,而温度是影响土壤氮素矿化的最重要的因素之一,研究温度变化对不同演替阶段群落土壤氮素矿化特征的影响,对于明确陆地生态系统中土壤氮素循环过程具有重要意义。本研究以甘肃兴隆山不同演替阶段群落为研究对象,采用室内恒温好气培养法,研究不同演替阶段群落[(草地、灌丛林、白桦林(Betula platyphylla forest)、青杄-白桦林(Picea wilsonii-Betula platyphylla forest)和青杄林(Picea wilsonii forest)]在不同温度(15 ℃、25 ℃和35 ℃)下的土壤氮素矿化特征。结果表明:(1) 除草地的0~20 cm土层外,其余演替阶段群落土壤氮素矿化速率随着温度(15~35 ℃)的增加而增大,且不同演替阶段群落土壤氮素累积矿化量随着温度的增加而增加;(2) 随着演替的正向推进,不同演替阶段群落土壤氮素矿化速率与累积矿化量均呈先升高后降低趋势, 白桦林的土壤氮素矿化速率最大,分别均是草地、灌丛林、青杄-白桦林、青杄林的1.63倍、1.61倍、1.25倍、1.47倍;而青杄-白桦林的累积矿化量最高,分别是草地、灌丛林、白桦林、青杄林的0.68倍、0.72倍、0.84倍、0.97倍;(3) 随着土壤深度的增加,土壤氮素矿化速率与累积矿化量均呈降低趋势,以0~20 cm土层的最大;(4) 不同演替阶段群落在15 ℃培养和25 ℃培养下的温度敏感系数Q10均有显著差异(P<0.05),随着演替的正向进行,温度敏感系数Q10呈先降低后增加趋势,而不同演替阶段群落在25 ℃培养和35 ℃培养下的温度敏感系数Q10均无显著差异(P>0.05)。研究结果将为群落土壤的质量演变和土壤供氮能力的动态变化提供理论依据。
唐维春, 刘小娥, 苏世平, 田晓娟, 唐庆童, 张婧. 甘肃兴隆山不同演替阶段群落土壤氮素矿化对温度的响应[J]. 干旱区研究, 2024, 41(6): 984-997.
TANG Weichun, LIU Xiao’e, SU Shiping, TIAN Xiaojuan, TANG Qingtong, ZHANG Jing. Response of soil nitrogen mineralization to temperature along the different successional stages in Xinglong Mountain, Gansu Province, China[J]. Arid Zone Research, 2024, 41(6): 984-997.
表1
不同演替阶段群落概况"
样地名称 | 地理位置 | 海拔/m | 植被类型 |
---|---|---|---|
草地 | 35°47.336′N,104°03.929′E | 2821 | 草地 |
灌丛林 | 35°47.312′N,104°03.009′E | 2810 | 灌丛 |
白桦林 Betula platyphylla forest | 35°47.979′N,104°03.501′E | 2803 | 森林 |
青杄-白桦林 Picea wilsonii-Betula platyphylla forest | 35°46.827′N,104°03.986′E | 2811 | 森林 |
青杄林 Picea wilsonii forest | 35°47.323′N,104°03.068′E | 2813 | 森林 |
表2
不同演替阶段群落土壤基本理化性质"
样地名称 | 土层/cm | 田间持水量/% | pH | 全氮/(g·kg-1) | 有机质含量/(g·kg-1) |
---|---|---|---|---|---|
草地 | 0~20 | 64.12±3.34Ca | 4.25±0.16Da | 2.36±0.47Aa | 140.376±Aa |
20~40 | 43.31±0.86Cb | 4.54±0.20Ca | 2.30±1.09Aa | 107.322±Ab | |
40~60 | 7.48±0.23Dc | 4.42±0.34Ba | 1.70±0.89Aa | 75.649±Ac | |
灌丛林 | 0~20 | 29.17±1.05Ea | 4.95±0.10Ba | 2.57±0.79Aa | 71.795±Ca |
20~40 | 26.01±0.86Db | 4.65±0.26Cab | 2.50±0.35Aa | 38.741±Db | |
40~60 | 23.20±1.98Cc | 4.43±0.32Bb | 2.13±0.31Aa | 27.068±Cc | |
白桦林 | 0~20 | 51.22±1.94Da | 4.48±0.10Cb | 2.98±0.76Aa | 38.713±Da |
20~40 | 40.02±1.90Cb | 4.52±0.06Cb | 3.07±0.84Aa | 25.659±Eb | |
40~60 | 33.78±4.17Bc | 4.72±0.10Ba | 2.35±0.25Aa | 13.986±Dc | |
青杄-白桦林 | 0~20 | 119.61±9.44Ba | 5.25±0.10Ac | 2.97±1.15Aa | 134.043±Aa |
20~40 | 77.20±2.14Ab | 5.53±0.10Bb | 2.45±0.64Aa | 100.989±Bb | |
40~60 | 68.21±3.14Ab | 5.81±0.10Aa | 2.02±0.60Aa | 69.316±Bc | |
青杄林 | 0~20 | 147.63±2.44Aa | 5.32±0.10Ab | 2.74±1.04Aa | 95.49±Ba |
20~40 | 66.07±6.04Bb | 5.87±0.10Aa | 2.36±0.71Aa | 62.436±Cb | |
40~60 | 23.05±2.02Cc | 5.91±0.10Aa | 2.01±0.73Aa | 30.763±Cc |
表3
土壤氮素矿化量和矿化速率的影响因子方差分析"
因素 | 土壤氮素累积矿化量 | 土壤氮素矿化速率 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
III 型平方和 | 自由度 | 均方 | F | P | III 型平方和 | 自由度 | 均方 | F | P | ||
C | 3050551.806 | 4 | 762637.951 | 189.075 | 0.000 | 3639.320 | 4 | 909.830 | 61.053 | 0.000 | |
T | 2919342.847 | 2 | 1459671.424 | 361.885 | 0.000 | 6658.647 | 2 | 3329.323 | 223.409 | 0.000 | |
SL | 10308879.556 | 2 | 5154439.778 | 1277.900 | 0.000 | 15483.943 | 2 | 7741.972 | 519.512 | 0.000 | |
C×T | 70743.412 | 8 | 8842.926 | 2.192 | 0.035 | 369.822 | 8 | 46.228 | 3.102 | 0.004 | |
C×SL | 190889.919 | 8 | 23861.240 | 5.916 | 0.000 | 1140.050 | 8 | 142.506 | 9.563 | 0.000 | |
T×SL | 521920.410 | 4 | 130480.102 | 32.349 | 0.000 | 734.509 | 4 | 183.627 | 12.322 | 0.000 | |
C×T×SL | 209610.291 | 16 | 13100.643 | 3.248 | 0.000 | 448.110 | 16 | 28.007 | 1.879 | 0.033 |
表4
不同演替阶段群落的最大矿化速率和累积矿化量多重比较"
群落类型或 土壤深度 | 土壤氮素累积矿化量/(mg·kg-1) | 最大矿化速率/(mg·kg-1·d-1) | |||||
---|---|---|---|---|---|---|---|
15 ℃ | 25 ℃ | 35 ℃ | 15 ℃ | 25 ℃ | 35 ℃ | ||
0~20 cm | 304.57±3.19cⅠ | 390.27±11.19bⅠ | 442.74±12.97aⅠ | 9.32±0.85bⅠ | 15.79±1.28aⅠ | 18.64±0.65aⅠ | |
20~40 cm | 198.28±13.21bⅡ | 277.17±17.12aⅡ | 288.11±15.25aⅡ | 4.56±0.16bⅡ | 8.81±0.79aⅡ | 9.31±0.41aⅡ | |
40~60 cm | 157.08±9.15bⅢ | 196.36±13.45aⅢ | 211.00±9.22aⅢ | 2.81±0.24bⅡ | 5.39±0.45aⅢ | 6.26±0.45aⅢ | |
草地 | 162.98±8.77Cb | 245.08±14.06Ba | 271.06±17.46Ca | 3.3847±0.39Db | 10.00±0.84ABa | 11.40±0.51Ba | |
灌丛林 | 179.72±8.29Cb | 254.95±13.49Ba | 364.36±16.45Ca | 3.62±0.33CDc | 8.38±0.83Bb | 10.49±0.37Ba | |
白桦林 | 296.22±9.63Ab | 343.33±17.04Aa | 366.69±11.48Aa | 9.84±0.51Ab | 12.36±0.69Aa | 14.09±0.32Aa | |
青杄-白桦林 | 239.82±10.41Bb | 323.15±11.32Aa | 345.03±14.83ABa | 6.18±0.32Bb | 10.86±1.02ABa | 12.08±0.67Ba | |
青杄林 | 221.15±5.49Bb | 273.17±13.69Ba | 303.79±11.27BCa | 4.79±0.53Cb | 9.58±0.86ABa | 10.30±0.72Ba |
表5
不同演替阶段群落的温度敏感系数Q10"
温度/℃ | 植被类型 | 氮矿化速率 /(mg·kg-1·d-1) | 比值 | Q10 |
---|---|---|---|---|
15 | 草地 | 1.983 | ||
灌丛林 | 1.979 | |||
青杄林 | 2.657 | |||
白桦林 | 5.634 | |||
青杄-白桦林 | 3.743 | |||
25 | 草地 | 5.617 | 25/15 | 2.832±0.112A |
灌丛林 | 4.989 | 25/15 | 2.521±0.147B | |
青杄林 | 5.892 | 25/15 | 2.217±0.138C | |
白桦林 | 7.583 | 25/15 | 1.346±0.050E | |
青杄-白桦林 | 6.032 | 25/15 | 1.612±0.035D | |
35 | 草地 | 6.116 | 35/25 | 1.089±0.076A |
灌丛林 | 5.358 | 35/25 | 1.074±0.097A | |
青杄林 | 5.662 | 35/25 | 0.961±0.077A | |
白桦林 | 8.339 | 35/25 | 1.1±0.075A | |
青杄-白桦林 | 6.506 | 35/25 | 1.079±0.079A | |
15 | 3.199 | |||
25 | 6.022 | 25/15 | 1.882 | |
35 | 6.396 | 35/25 | 1.062 |
[1] |
李铭, 朱利川, 张全发, 等. 不同土地利用类型对丹江口库区土壤氮矿化的影响[J]. 植物生态学报, 2012, 36(6): 530-538.
doi: 10.3724/SP.J.1258.2012.00530 |
[Li Ming, Zhu Lichuan, Zhang Quanfa, et al. Impacts of different land use types on soil nitrogen mineralization in Danjiangkou Reservoir Area, China[J]. Chinese Journal of Plant Ecology, 2012, 36(6): 530-538. ]
doi: 10.3724/SP.J.1258.2012.00530 |
|
[2] | 高真真, 段卫东, 胡坤, 等. 温度和水分对典型香型烟区植烟土壤氮素矿化的影响[J]. 土壤, 2019, 51(3): 442-450. |
[Gao Zhenzhen, Duan Weidong, Hu Kun, et al. Effects of temperature and moisture on nitrogen mineralization in tobacco planting soil in typical cigarette-type tobacco area[J]. Soils, 2019, 51(3): 442-450. ] | |
[3] | Stanford G, Smith S J. Nitrogen mineralization potentials of soils[J]. Soil Science Society of America Journal, 1972, 981: 465-472. |
[4] |
宋良翠, 马维伟, 李广, 等. 温度变化对尕海湿地不同退化梯度土壤氮矿化的影响[J]. 草业学报, 2021, 30(9): 27-37.
doi: 10.11686/cyxb2020347 |
[Song Liangcui, Ma Weiwei, Li Guang, et al. Effects of temperature on soil nitrification potential of Gahai degraded wetland[J]. Acta Agrestia Sinica, 2021, 30(9): 27-37. ] | |
[5] | 李志杰, 杨万勤, 岳楷, 等. 温度对川西亚高山3种森林土壤氮矿化的影响[J]. 生态学报, 2017, 37(12): 4045-4052. |
[Li Zhijie, Yang Wanqin, Yue Kai, et al. Effects forests of temperature on soil nitrogen mineralization in three subalpine forests of western Sichuan, China[J]. Acta Ecologica Sinica, 2017, 37(12): 4045-4052. ] | |
[6] | Guntiñas M, Leirós M, Trasar-Cepeda C, et al. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study[J]. European Journal of Soil Biology, 2011, 48: 73-80. |
[7] | 欧阳学军, 周国逸, 魏识广, 等. 南亚热带森林植被恢复演替序列的土壤有机碳氮矿化[J]. 应用生态学报, 2007, 18(8): 1688-1694. |
[Ouyang Xuejun, Zhou Guoyi, Wei Shiguang, et al. Soil organic carbon and nitrogen mineralization along a forest successional gradient in Southern China[J]. Chinese Journal of Applied Ecology, 2007, 18(8): 1688-1694. ]
pmid: 17974230 |
|
[8] | 邢肖毅, 黄懿梅, 安韶山, 等. 黄土高原沟壑区森林带不同植物群落土壤氮素含量及其转化[J]. 生态学报, 2013, 33(22): 7181-7189. |
[Xing Xiaoyi, Huang Yimei, An Shaoshan, et al. Soil nitrogen concenlralions and translormalions under dilerent vegelalion lypes in foresled zones of the loess Gully Region[J]. Acla Ecologica Sinica, 2013, 33(22): 7181-7189. ] | |
[9] | Wang W J, Smith C J, Chen D. Towards a standardised procedure for determining the potentially mineralisable nitrogen of soil[J]. Biology and Fertility of Soils, 2003, 37(6): 362-374. |
[10] | 傅民杰, 王传宽, 王颖, 等. 四种温带森林土壤氮矿化与硝化时空格局[J]. 生态学报, 2009, 29(7): 3747-3758. |
[Fu Minjie, Wang Chuankuan, Wang Ying, et al. Temporal and spatial patterns of soil nitrogen mineralization and nitrification in four temperate forests[J]. Acta Ecologica Sinica, 2009, 29(7): 3747-3758. ] | |
[11] | 刘欣, 黄运湘, 袁红, 等. 植被类型与坡位对喀斯特土壤氮转化速率的影响[J]. 生态学报, 2016, 36(9): 2578-2587. |
[Liu Xin, Huang Yunxiang, Yuan Hong, et al. Effects of vegetation type and slope position on soil nitrogen transformation rate in Karst regions[J]. Acta Ecologica Sinica, 2016, 36(9): 2578-2587. ] | |
[12] | 魏强, 凌雷, 柴春山, 等. 甘肃兴降山不同演替阶段典型森林群落的凋落物动态[J]. 南京林业大学报(自然科学版), 2017, 41(5): 27-34. |
[Wei Qiang, Ling Lei, Chai Chunshan, et al. Water conservation function of litter and soil depth undermain forest types in Xinglong Mountain of Gansu[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5): 27-34. ] | |
[13] | 魏强, 凌雷, 王多锋, 等. 甘肃兴隆山主要森林类型凋落物累积量及其影响因子[J]. 林业科学研究, 2015, 28(6): 818-825. |
[Wei Qiang, Ling Lei, Wang Duofeng, et al. Litter accumulation and its impact factor of three main forest communities in Xinglong Mountain,Gansu Province[J]. Forest Research, 2015, 28(6): 818-825. ] | |
[14] | 魏强, 凌雷, 张广忠, 等. 甘肃兴隆山主要森林类型凋落物累积量及持水特性[J]. 应用生态学报, 2011, 22(10): 2589-2598. |
[Wei Qiang, Ling Lei, Zhang Guangzhong, et al. Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, Northwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2589-2598. ]
pmid: 22263462 |
|
[15] | 魏强, 凌雷, 柴春山, 等. 甘肃兴隆山森林演替过程中的土壤理化性质[J]. 生态学报, 2012, 32(15): 4700-4713. |
[Wei Qiang, Ling Lei, Chai Chunshan, et al. Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu[J]. Acta Ecologica Sinica, 2012, 32(15): 4700-4713. ] | |
[16] | 魏强, 凌雷, 王多锋, 等. 不同海拔甘肃兴隆山主要森林群落的土壤理化性质[J]. 西北林学院学报, 2019, 34(4): 26-35. |
[Wei Qiang, Ling Lei, Wang Duofeng, et al. Soil physicochemical properties of three main forest communities at different altitudes in Xinglong Mountain of Gansu Province[J]. Journal of Northwest Forestry University, 2019, 34(4): 26-35. ] | |
[17] | 魏强, 凌雷, 张广忠, 等. 兴隆山森林群落不同演替阶段优势乔木种群结构特征[J]. 南京林业大学(自然科学版), 2015, 39(5): 59-66. |
[Wei Qiang, Ling Lei, Zhang Guangzhong, et al. Structure characteristics of dominant tree species population in different succession stages of forest community in Xinglong Mountain[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(5): 59-66. ] | |
[18] | 凌雷, 魏强, 柴春山, 等. 甘肃兴隆山主要森林类型苔藓生物量及其影响因子[J]. 中国水土保持, 2016(10): 60-64. |
[Ling Lei, Wei Qiang, Chai Chunshan, et al. Bryophyte biomass and its influencing factors in major forest types in Xinglong Mountain, Gansu Province[J]. Chinese Journal of Soil and Water Conservation, 2016(10): 60-64. ] | |
[19] | 魏强, 凌雷, 张广忠, 等. 甘肃兴隆山主要森林类型土壤渗透性[J]. 东北林业大学学报, 2013, 41(3): 57-62. |
[Wei Qiang, Ling Lei, Zhang Guangzhong, et al. Soil infiltration characteristics of main forest types in Xinglong Mountain of Gansu[J]. Journal of Northeast Forestry University, 2013, 41(3): 57-62. ] | |
[20] | 王乐童, 雒晓芳, 赵鹏飞, 等. 兰州兴隆山土壤微生物的分布及其相关特性分析[J]. 中国微生态学杂志, 2021, 33(11): 1283-1289. |
[Wang Letong, Luo Xiaofang, Zhao Pengfei, et al. Distribution and characteristics of soil microorganisms in Xinglong Mountain in Lanzhou[J]. China Journal of Microecology, 2021, 33(11): 1283-1289. ] | |
[21] | 张军, 陶华旸, 李文杰, 等. 甘肃省草地生态系统时空变化特征[J]. 草业科学, 2022, 39(6): 1106-1114. |
[Zhang Jun, Tao Huayang, Li Wenjie, et al. Spatial change of rassland ecosystem in Gansu Province[J]. Pratacultural Science, 2022, 39(6): 1106-1114. ] | |
[22] | 钟诚, 张军保, 韩晓明, 等. 不同土壤质地田间持水量实验成果分析[J]. 东北水利水电, 2014, 32(5): 65-67. |
[Zhong Cheng, Zhang Junbao, Han Xiaoming, et al. Analysis of experimental results of field water holding capacity in different soil textures[J]. Northeast Water Resources and Hydropower, 2014, 32(5): 65-67. ] | |
[23] | 端爱玲, 韩张雄, 黄艳, 等. 靛酚蓝比色法测定土壤中铵态氮注意事项[J]. 当代化工, 2021, 50(12): 2861-2864. |
[Duan Ailing, Han Zhangxiong, Huang Yan, et al. Problems and solutions for determination of ammonium nitrogen in soil by the method of indophenol blue colorimetry[J]. Contemporary Chemical Industry, 2021, 50(12): 2861-2864. ] | |
[24] |
苗杰, 李斐, 张加康, 等. 紫外分光光度法测定土壤硝态氮校正因数的优化[J]. 华北农学报, 2019, 34(S1): 204-212.
doi: 10.7668/hbnxb.20190355 |
[Miao Jie, Li Fei, Zhang Jiakang, et al. Optimization of correction factor of soil nitrate nitrogen by ultraviolet spectrophotometry[J]. Acta Agriculturae Boreal-Sinica, 2019, 34(S1): 204-212. ] | |
[25] | Heumann S, Böttcher J. Temperature functions of the rate coefficients of net Nmineralization in sandy arable soils. Part I: derivation from laboratory incubations, I[J]. Journal of Plant Nutrition and Soil Science, 2004, 167: 381-389. |
[26] | Benbi D K, Khosa M K. Effects of temperature, moisture, and chemical composition of organic substrates on C mineralization in soils[J]. Communications in Soil Science and Plant Analysis, 2014, 45(21): 2734-2753. |
[27] | 吕世丽, 李新平, 李文斌, 等. 牛背梁自然保护区不同海拔高度森林土壤养分特征分析[J]. 西北农林科技大学学报(自然科学版), 2013, 41(4): 161-168. |
[Lv Shili, Li Xinping, Li Wenbin, et al. Forest soil nutrient characteristics at different altitudes inNiubeiliang National Natural Reserve[J]. Journal of Northwest A & F University (Natural Sciences Edition), 2013, 41(4): 161-168. ] | |
[28] | Yin H, Chen Z, Liu Q. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China[J]. Soil Biology and Biochemistry, 2012, 50: 77-84. |
[29] | Gill A L, Grinder R M, See C R, et al. Soil carbon availability decouples net nitrogen mineralization and net nitrification across United States long term ecological research sites[J]. Biogeochemistry, 2023, 162(1): 13-24. |
[30] | 陈红, 马文明, 王长庭, 等. 高寒草地灌丛化对土壤团聚体稳定性及其胶结物质的影响[J]. 土壤学报, 2023, 60(1): 151-163. |
[Chen Hong, Ma Wenming, Wang Changting, et al. Efects of shrub-encroached grassland on the stability of soil aggregales and cementing materials in alpine grassland of Qinghai-Tibet Plateaul[J]. Acta Pedologica Sinica, 2023, 60(1): 151-163. ] | |
[31] | 刘姝媛, 胡浪云, 储双双, 等. 3种林木凋落物分解特征及其对赤红壤酸度及养分含量的影响[J]. 植物资源与环境报, 2013, 22(3): 11-17. |
[Liu Shuyuan, Hu Langyun, Chu Shuangshuang, et al. Decomposition conten characteristics of three forest litters and their effects on acidity and nutrient red soil[J]. Journal of Plant Resources and Environment, 2013, 22(3): 11-17. ] | |
[32] | 夏国栋, 朱四喜, 李武江, 等. 喀斯特煤矿区土地利用类型对土壤养分、酶活性及化学计量特征的影响[J]. 中国无机分析化学, 2022, 12(6): 67-76. |
[Xia Guodong, Zhu Sixi, Li Wujiang, et al. Effects of land use types on soil nutrients, enzyme activities and stoichiometric characteristics in Karst Coal Mining Areas[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(6): 67-76. ] | |
[33] | 王光军, 田大伦, 朱凡, 等. 湖南省4种森林群落土壤氮的矿化作用[J]. 生态学报, 2009, 29(3): 1607-1615. |
[Wang Guangjun, Tian Dalun, Zhu Fan, et al. Net nitrogen mineralization in soils under four forest communities in Hunan Province[J]. Acta Ecological Sinica, 2009, 29(3): 1607-1615. ] | |
[34] | Hishi T, Urakawa R, Tashiro N, et al. Seasonality of factors controlling N mineralization rates among slope positions and aspects in cool-temperate deciduous natural forests and larch plantations[J]. Biology and Fertility of Soils, 2014, 50(2): 343-356. |
[35] | 吴建国, 苌伟, 艾丽. 祁连山中部云杉林和高寒草甸土壤N矿化及其影响因素研究[J]. 林业科学研究, 2008(2): 161-167. |
[Wu Jianguo, Chang Wei, Ai Li. The mineralization of soil nitrogen and its motivating factors to the Dragon Spruce forest and alpine meadows of the Oilian Mountains[J]. Forest Research, 2008(2): 161-167. ] | |
[36] | Deressa A. Effects of soil moisture and temperature on carbon and nitrogen mineralization in grassland soils fertilized with improved cattle slurry manure with and without manure additive[J]. Physical Review E Statal Nonlinear and Soft Matter Physics, 2015, 2(1): 1-9. |
[37] | Ferrari J B. Fine-scale pattems of leaf litterlall and nitrogen cycling in an old-growth forest[J]. Canadian Joumal of Forest Research, 1999, 29(3): 291-302. |
[1] | 杨晓玲, 周华, 陈静, 赵慧华, 吴雯. 河西走廊东部不同气候态气温变化及其对气候评价的影响[J]. 干旱区研究, 2024, 41(7): 1089-1098. |
[2] | 赵立超, 张成福, 贺帅, 苗林, 冯霜, 潘思涵. 复杂山区地表温度模拟及影响——以内蒙古大青山为例[J]. 干旱区研究, 2024, 41(5): 765-775. |
[3] | 李文秀, 燕振刚. 基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J]. 干旱区研究, 2024, 41(4): 590-602. |
[4] | 杨雅青, 张翀, 张婕, 王玉丹. 关中地区土壤干湿变化及对气候的响应[J]. 干旱区研究, 2024, 41(2): 261-271. |
[5] | 戴文渊, 玛久草, 陈亦晨, 郑志祥, 张芮, 张江科. 黄河流域甘肃段水生态安全驱动力分析及动态演变[J]. 干旱区研究, 2024, 41(10): 1662-1671. |
[6] | 梁元也, 范连连, 马学喜, 毛洁菲, 惠婷婷, 李耀明. 新疆北部六种草地类型土壤碳氮磷生态化学计量特征[J]. 干旱区研究, 2024, 41(10): 1708-1718. |
[7] | 周子涵, 王基鑫, 刘维成, 王勇, 张君霞, 郭润霞. 甘肃省暖季降水日变化特征[J]. 干旱区研究, 2024, 41(1): 1-12. |
[8] | 李永广, 苑广辉. 青海湖流域不同下垫面类型对地表温度的生物物理影响[J]. 干旱区研究, 2024, 41(1): 24-35. |
[9] | 王基鑫, 黎倩, 栗晗, 张君霞, 刘新雨. WQSRTP方法在甘肃省高低温客观预报中的应用[J]. 干旱区研究, 2023, 40(7): 1052-1064. |
[10] | 赵玉娟, 路亚奇, 张洪芬, 张可心, 周忠文, 刘英. 基于模糊数学的甘肃河东地区短时暴雨的大气环境参数综合评价研究[J]. 干旱区研究, 2023, 40(4): 543-551. |
[11] | 张志高, 孙梓欣, 张秀丽, 郭可欣, 李卓娅, 郝海姣, 蔡茂堂. 1960—2020年黄河流域气候生长季时空演变及成因分析[J]. 干旱区研究, 2023, 40(10): 1537-1546. |
[12] | 尹明财,朱豪,胡圆昭,李振中,张济世. 甘肃省灰水足迹变化特征及驱动因素[J]. 干旱区研究, 2022, 39(6): 1810-1818. |
[13] | 杨慧,张泽,张兰,闫兴富. 柠条种子萌发对不同温度和土壤含水量的响应[J]. 干旱区研究, 2022, 39(6): 1875-1884. |
[14] | 张康,聂志刚,王钧,李广. 温度升高下降水和施氮对旱地春小麦产量和生物量影响的模拟与分析[J]. 干旱区研究, 2022, 39(6): 1966-1975. |
[15] | 侯青青,陈英,裴婷婷,吉珍霞,谢保鹏. 近25 a来甘肃省耕地资源时空变化及其影响因子[J]. 干旱区研究, 2022, 39(3): 955-967. |
|