干旱区研究 ›› 2024, Vol. 41 ›› Issue (6): 974-983.doi: 10.13866/j.azr.2024.06.07 cstr: 32277.14.j.azr.2024.06.07
张建华1(), 周晓阳2, 郭旭婷1, 杜鑫鑫1, 安利1, 秦浩3, 刘勇4, 张红4, 徐龙超2()
收稿日期:
2023-12-11
修回日期:
2024-03-29
出版日期:
2024-06-15
发布日期:
2024-07-03
作者简介:
张建华(1978-),女,副教授,博士,主要从事植物生态学、生态系统物质循环研究. E-mail: wj123-2007@163.com
基金资助:
ZHANG Jianhua1(), ZHOU Xiaoyang2, GUO Xuting1, DU Xinxin1, AN Li1, QIN Hao3, LIU Yong4, ZHANG Hong4, XU Longchao2()
Received:
2023-12-11
Revised:
2024-03-29
Published:
2024-06-15
Online:
2024-07-03
摘要:
定量研究露天煤矿人工林植被碳密度分配格局及其影响因素,进而为矿区森林碳汇服务功能的提升提供数据基础。本研究以安太堡矿区排土场油松(Pinus tabulaeformis)、小叶杨(Populus microphylla)、加拿大杨(Populus canadensis)、刺槐(Robinia pseudoacacia)、榆树(Ulmus pumila)和刺槐-榆树混交林为研究对象,基于样地本底调查和异速生长方程法,测定了不同人工林的碳密度及空间分布格局。加拿大杨林植被碳密度(36.95 t∙hm-2)显著高于其他人工林(P<0.05),密植油松林植被碳密度显著高于疏植油松林(P<0.05);人工林各组分碳密度整体表现为:乔木层>凋落物层>草本层、灌木层(P<0.05),其中,乔木层碳密度占植被碳密度的78.3%~93.6%,表明人工林植被碳密度以乔木层为主;人工林乔木层树干中碳密度显著高于根、枝和叶(P<0.05),加拿大杨林树干碳密度显著高于刺槐林和刺槐-榆树混交林,密植油松林显著高于疏植油松林。乔木层和凋落物层碳密度均与林分密度显著正相关,与草本高度和盖度显著负相关,且乔木层碳密度与乔木高度显著正相关(P<0.05)。从固碳功能来看,安太堡煤矿排土场复垦合理密植油松和加拿大杨,有利于矿区的生态恢复,从而实现生态环境安全的可持续发展。
张建华, 周晓阳, 郭旭婷, 杜鑫鑫, 安利, 秦浩, 刘勇, 张红, 徐龙超. 露天煤矿人工林植被碳密度分配格局及其影响因素[J]. 干旱区研究, 2024, 41(6): 974-983.
ZHANG Jianhua, ZHOU Xiaoyang, GUO Xuting, DU Xinxin, AN Li, QIN Hao, LIU Yong, ZHANG Hong, XU Longchao. Carbon density distribution pattern and its factors of the artificial forest vegetation in opencast coal mine[J]. Arid Zone Research, 2024, 41(6): 974-983.
表1
林分基本特征"
林型 | 采样点 | 纬度(N) | 经度(E) | 海拔/m | 林分密度/(株·hm-2) | 林龄/a | 胸径/cm | 树高/m |
---|---|---|---|---|---|---|---|---|
小叶杨林PM | 西排 | 39°29′26.15″ | 112°18′55.30″ | 1469.00 | 2.13×103 | 20 | 10.90 | 5.50 |
榆树林UP | 西排 | 39°29′28.64″ | 112°18′44.41″ | 1474.00 | 1.03×103 | 20 | 12.90 | 5.50 |
油松林SPT | 西排 | 39°29′29.80″ | 112°18′46.49″ | 1471.00 | 1.47×103 | 20 | 10.70 | 4.70 |
刺槐林RP | 西排 | 39°29′33.35″ | 112°18′44.08″ | 1474.00 | 2.03×103 | 20 | 9.80 | 4.80 |
刺槐-榆树混交林RP-UP | 南排 | 39°27′41.45″ | 112°20′04.13″ | 1391.00 | 3.40×103 | 30 | 7.20 | 4.60 |
油松林DPT | 南排 | 39°27′41.54″ | 112°20′05.26″ | 1384.00 | 3.43×103 | 30 | 8.80 | 5.60 |
加拿大杨PC | 南排 | 39°27′59.82″ | 112°19′39.85″ | 1348.00 | 3.23×103 | 30 | 7.20 | 5.90 |
表2
乔木生物量相对生长方程"
树种 | 器官 | 回归方程 | 回归系数(R2) | 备注 |
---|---|---|---|---|
刺槐RP | 根 | Y=0.1145 (D2H)0.6328 [ | - | 胸径范围:2.7~20.6 cm 树高范围:2.2~7.0 m |
枝 | Y=0.02425(D2H)0.7908 [ | - | ||
叶 | Y=0.0545(D2H)0.4574 [ | - | ||
干 | Y=0.05527(D2H)0.8576 [ | - | ||
油松PT | 根 | Y=0.340D0.839e0.082D[ | 0.947 | 胸径范围:3.4~20.6 cm 树高范围:2.7~9.0 m |
枝 | Y=0.483D0.870e0.060D[ | 0.944 | ||
叶 | Y=0.320D0.810e0.058D[ | 0.959 | ||
干 | Y=1.373D0.465e0.113D[ | 0.978 | ||
总 | Y=2.905D0.549e0.097D[ | 0.971 | ||
榆树UP | 根 | Y=0.0146D2.893[ | - | 胸径范围:4.7~20.7 cm 树高范围:2.5~9.0 m |
枝 | Y=0.0303D2.3445[ | - | ||
叶 | Y=0.033D1.7241[ | - | ||
干 | Y=0.0146D2.5837[ | - | ||
小叶杨PM | 根 | Y=10.5723+0.0044(D2H)[ | 0.6691 | 胸径范围:3.8~18.3 cm 树高范围:3.0~7.5 m |
枝 | Y=12.5405+0.0091(D2H)[ | 0.5595 | ||
叶 | Y=6.5542+0.0014(D2H)[ | 0.1971 | ||
干 | Y=0.4644(D2H)0.6455[ | 0.7517 | ||
总 | Y=1.9729(D2H)0.5608[ | 0.8064 | ||
加拿大杨PC | 根 | Y=10-0.8268(D2H)0.5798[ | - | 胸径范围:2.2~10.8 cm 树高范围:2.5~10.0 m |
枝 | Y=10-0.7804(D2H)0.5321[ | - | ||
叶 | Y=10-0.4701(D2H)0.3778[ | - | ||
干 | Y=10-0.7143(D2H)0.6811[ | - |
表3
安太堡煤矿复垦区人工林碳密度及其分配比例"
组分 | 项目 | SPT | DPT | RP | UP | RP-UP | PM | PC |
---|---|---|---|---|---|---|---|---|
乔木层 | 碳密度/(t·hm-2) | 18.24±1.56c | 30.08±3.27ab | 19.23±1.35c | 20.93±1.50bc | 21.61±3.19bc | 18.09±4.12c | 33.84±4.09a |
比例/% | 80.54 | 93.60 | 84.40 | 80.80 | 83.32 | 78.34 | 91.59 | |
灌木层 | 碳密度/(t·hm-2) | 0.03±0.01b | 0.06±0.03b | 0.13±0.002a | 0.001±0.001b | 0.13±0.04a | 0.01±0.01b | - |
比例/% | 0.12 | 0.01 | 0.06 | 0.56 | 0.51 | 0.15 | - | |
草本层 | 碳密度/(t·hm-2) | 0.09±0.02de | 0.03±0.003e | 0.29±0.01a | 0.23±0.02ab | 0.15±0.02cd | 0.18±0.03bc | 0.11±0.04cde |
比例/% | 0.39 | 1.04 | 0.82 | 1.23 | 0.57 | 0.09 | 0.29 | |
凋落物层 | 碳密度/(t·hm-2) | 4.29±0.11b | 8.22±0.16a | 4.14±0.33b | 1.20±0.14d | 4.05±0.24b | 3.15±0.20c | 3.00±0.03c |
比例/% | 18.95 | 5.36 | 14.71 | 17.41 | 15.60 | 21.42 | 8.13 | |
总计 | 碳密度/(t·hm-2) | 22.65±1.60b | 38.39±3.43a | 23.80±1.64b | 22.36±1.61b | 25.94±3.14b | 21.43±3.96b | 36.95±4.05a |
比例/% | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
[1] | 胡振琪, 赵艳玲. 矿山生态修复面临的主要问题及解决策略[J]. 中国煤炭, 2021, 47(9): 2-7. |
[Hu Zhenqi, Zhao Yanling. Main problems in ecological restoration of mines and their solutions[J]. China Coal, 2021, 47(9): 2-7. ] | |
[2] | 王瑜, 张小平, 魏博微. 环境脆弱区大型露天煤矿开发与生态环保协调发展研究[J]. 中国煤炭, 2023, 49(S1): 15-23. |
[Wang Yu, Zhang Xiaoping, Wei Bowei. The coordinated development research of large-scale open-pit coal mine and ecological environmental protection in environmentally fragile areas[J]. China Coal, 2023, 49(S1): 15-23. ] | |
[3] | 吕凯, 李雪飞, 智颖飙. 露天煤矿排土场生物修复与生态重建技术[J]. 内蒙古师范大学学报(自然科学汉文版), 2019, 48(5): 458-464. |
[Lv Kai, Li Xuefei, Zhi Yingbiao. Mechanism of phytoremediation and co-reconstruction for waste dump in open-cast collieries[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2019, 48(5): 458-464. ] | |
[4] | 杨勤学, 赵冰清, 郭东罡. 中国北方露天煤矿区植被恢复研究进展[J]. 生态学杂志, 2015, 34(4): 1152-1157. |
[Yang Qinxue, Zhao Bingqing, Guo Donggang. A review on vegetation restoration of opencast coal mine areas in northern China[J]. Chinese Journal of Ecology, 2015, 34(4): 1152-1157. ] | |
[5] | 刘英, 林家权, 岳辉, 等. 荒漠化矿区不同土地利用类型土壤呼吸及其影响因子[J]. 煤炭学报, 2023, 48(7): 2893-2905. |
[Liu Ying, Lin Jiaquan, Yue Hui, et al. Soil respiration and its influencing factors in different land use types in desertification mining areas[J]. Journal of China Coal Society, 2023, 48(7): 2893-2905. ] | |
[6] | Zhang C H, Ju W M, Chen J M, et al. Sustained biomass carbon sequestration by China’s forests from 2010 to 2050[J]. Forests, 2018, 9(689): 1-19. |
[7] | Ahmad B, Wang Y H, Hao J, et al. Variation of carbon density components with overstory structure of larch plantations in northwest China and its implication for optimal forest management[J]. Forest Ecology and Management, 2021, 496: 1-11. |
[8] | Zhang X Q, Wang H C, Chhin S, et al. Effects of competition, age and climate on tree slenderness of Chinese fir plantations in southern China[J]. Forest Ecology and Management, 2020, 458: 117815. |
[9] | Zhang C H, Ju W M, Chen J M, et al. Disturbance-induced reduction of biomass carbon sinks of China’s forests in recent years[J]. Environmental Research Letters, 2015, 10: 114021. |
[10] | 潘帅, 于澎涛, 王彦辉, 等. 六盘山森林植被碳密度空间分布特征及其成因[J]. 生态学报, 2014, 34(22): 6666-6677. |
[Pan Shuai, Yu Pengtao, Wang Yanhui, et al. Spatial distribution of carbon density for forest vegetation and the influencing factors in Liupan Mountains of Ningxia, NW China[J]. Acta Ecologica Sinica, 2014, 34(22): 6666-6677. ] | |
[11] | 李智兰. 矿区复垦对土壤养分和酶活性以及微生物数量的影响[J]. 水土保持通报, 2015, 35(2): 6-13. |
[Li Zhilan. Soil nutrients, enzyme activity and microbe quantity in reclaimed soil in mining area[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 6-13. ] | |
[12] | 杨彦明, 刘景辉, 张铁毅, 等. 不同植被类型复垦对黑岱沟露天煤矿土壤理化性质的影响[J]. 可持续发展, 2017, 7(4): 240-247. |
[Yang Yanming, Liu Jinghui, Zhang Tieyi, et al. Effects of different vegetations reclamation on soil physical and chemical properties in Heidaigou opencast coal mine area[J]. Sustainable Development, 2017, 7(4): 240-247. ] | |
[13] | Huang L, Zhang P, Hu Y G, et al. Vegetation succession and soil infiltration characteristics under different aged refuse dumps at the Heidaigou opencast coal mine[J]. Global Ecology and Conservation, 2015, 4: 255-263. |
[14] | 李厚春, 秦浩, 张红. 平朔煤矿复垦区不同人工林草本层植物群落特征[J]. 山西大学学报(自然科学版), 2023, DOI:10.13451/j.sxu.ns.2023151. |
[Li Houchun, Qin Hao, Zhang Hong, et al. Characteristics of plant communities in different herbaceous layers of plantation forests in Pingshuo coal mine reclamation area[J]. Journal of Shanxi University (Natural Science Edition), 2023, DOI:10.13451/j.sxu.ns.2023151. ] | |
[15] | 张建华, 张琨, 刘勇, 等. 山西省露天煤矿复垦区典型人工林凋落物持水性能研究[J]. 干旱区研究, 2023, 40(12): 2043-2052. |
[Zhang Jianhua, Zhang Kun, Liu Yong, et al. Study on water-holding capacity of litters of typical artificial forests in reclaimed region of opencast coal mine in Shanxi[J]. Arid Zone Research, 2023, 40(12): 2043-2052. ] | |
[16] |
吕刚, 刘雅卓, 李叶鑫, 等. 海州露天煤矿排土场植被恢复的土壤水文效应评价[J]. 生态环境学报, 2017, 26(1): 67-72.
doi: 10.16258/j.cnki.1674-5906.2017.01.011 |
[Lv Gang, Liu Yazhuo, Li Yexin, et al. Evaluation of soil hydrology effects of the vegetation restoration in Haizhou open-pit coal mine dump[J]. Ecology and Environmental Sciences, 2017, 26(1): 67-72. ] | |
[17] | 邓蕾. 黄土高原生态系统碳固持对植被恢复的响应机制[D]. 杨凌: 西北农林科技大学, 2014. |
[Deng Lei. Responsing Mechanism of Ecosystem Carbon Sequestration Benefits to Vegetation Restoration on the Loess Plateau of China[D]. Yangling: Northwest Agriculture and Forest University, 2014. ] | |
[18] | Akala V A, Lal R. Potential of mine land reclamation for soil organic carbon sequestration in Ohio[J]. Land Degradation & Development, 2015, 11(3): 289-297. |
[19] | 文月荣, 党廷辉, 唐骏, 等. 不同林地恢复模式下露天煤矿排土场土壤有机碳分布特征[J]. 应用生态学报, 2016, 27(1): 83-90. |
[Wen Yuerong, Dang Tinghui, Tang Jun, et al. Distribution characteristics of soil organic carbon under different forest restoration modes on opencast coal mine dump[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 83-90. ]
pmid: 27228596 |
|
[20] | 陈浮, 朱燕峰, 马静, 等. 黄土高原矿区生态修复固碳机制与增汇潜力及调控[J]. 煤炭科学技术, 2023, 51(1): 502-513. |
[Chen Fu, Zhu Yanfeng, Ma Jing, et al. Mechanism, potential and regulation of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau[J]. Coal Science and echnology, 2023, 51(1): 502-513. ] | |
[21] | Kou M, Patricio G F, Hu S, et al. The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China): A chronosequence approach[J]. Forest Ecology and Management, 2016, 375: 146-158. |
[22] |
曹裕松, 吴风云, 肖宜安, 等. 退耕还林对土壤养分含量及其垂直分布的影响[J]. 生态环境学报, 2016, 25(2): 196-201.
doi: 10.16258/j.cnki.1674-5906.2016.02.003 |
[Cao Yusong, Wu Fengyun, Xiao Yi’an, et al. Effect of returning farmland to forests on soil nutrients contents and its vertical distribution[J]. Ecology and Environmental Sciences, 2016, 25(2): 196-201. ] | |
[23] | 石磊娜. 榆树用于北京山区建筑工程施工大气污染修复的可行性论述[J]. 科技创新导报, 2020, 17(31): 91-94. |
[Shi Leina. Discussion on the feasibility of elm used for air pollution remediation in Beijing mountainous area construction project[J]. Science and Technology Innovation Herald, 2020, 17(31): 91-94. ] | |
[24] | 范明彦, 田丽慧, 周海. 微地形对高寒固沙植物水分利用特征的影响[J]. 干旱区研究, 2024, 41(1): 60-70. |
[Fan Mingyan, Tian Lihui, Zhou Hai. Effects of micro-topography on water use characteristics of alpine sand-fixing plants[J]. Arid Zone Research, 2024, 41(1): 60-70. ] | |
[25] | 郭春燕, 李晋川, 岳建英, 等. 安太堡露天煤矿复垦区不同人工林土壤呼吸特征[J]. 水土保持通报, 2015, 35(3): 55-61. |
[Guo Chunyan, Li Jinchuan, Yue Jianying, et al. Soil respiration characteristics of different artificial forests I reclaimed region of Antaibao opencast coal mine[J]. Bulletin of Soil and Water Conservation, 2015, 35(3): 55-61. ] | |
[26] | 张青, 毕润成, 吴兆飞, 等. 安太堡露天煤矿植被恢复区物种天然更新时空动态[J]. 生态学杂志, 2016, 35(12): 3223-3232. |
[Zhang Qing, Bi Runcheng, Wu Zhaofei, et al. Temporal-spatial dynamics of natural regeneration of species in ecological reclamation of Antaibao opencast coal mine[J]. Chinese Journal of Ecology, 2016, 35(12): 3223-3232. ] | |
[27] | 李晋川, 白中科, 柴书杰, 等. 平朔露天煤矿土地复垦与生态重建技术研究[J]. 科技导报, 2009(17): 30-34. |
[Li Jinchuan, Bai Zhongke, Chai Shujie, et al. Study on technology of land reclamation and ecological rehabilitation of waste land in Pingshuo surface mine[J]. Science & Technology Review, 2009(17): 30-34. ] | |
[28] | 耿冰瑾, 王舒菲, 曹银贵, 等. 山西平朔露天矿区不同年限复垦地植被重建特征对比分析[J]. 生态学报, 2022, 42(8): 3400-3419. |
[Geng Bingjin, Wang Shufei, Cao Yingui, et al. Comparative analysis of vegetation reconstruction characteristics of different years in the reclaimed land of the Pingshuo opencast mining area, Shanxi Province[J]. Acta Ecologica Sinica, 2022, 42(8): 3400-3419. ] | |
[29] | 王宁, 富丰珍. 山西森林生态系统碳储量研究[M]. 北京: 中国农业科学技术出版社, 2015. |
[Wang Ning, Fu Fengzhen. Research on Carbon Storage of Forest Ecosystem in Shanxi Province[M]. Beijing: China Agricultural Science and Technology Press, 2015. ] | |
[30] | 原野. 典型露天煤矿复垦生态系统碳固存研究: 机理与效应——以平朔露天矿为例[D]. 北京: 中国地质大学, 2018. |
[Yuan Ye. Carbon Sequestration of Reclaimed Ecological System in Typical Open Pit Coal Mine: Mechanism and Effect: A Case Study on the Pingshuo Mine[D]. Beijing: China University of Geosciences, 2018. ] | |
[31] | 高阳. 黄土高原地区林草生态系统碳密度和碳储量研究[D]. 杨陵: 西北农林科技大学, 2014. |
[Gao Yang. Carbon Density and Storage of Forest and Grassland Ecosystems in the Loess Plateau Region[D]. Yangling: Northwest A & F University, 2014. ] | |
[32] | 苏向阳. 潮白河实验林场规划设计资料选编(二)—加杨生物量的初步研究[J]. 林业资源管理, 1981(4): 52-55. |
[Su Xiangyang. Plan and design material anthology for Chaobaihe experimental forest farm (II)-preliminary study on the biomass of Populus canadensis[J]. Forest Resource Management, 1981(4): 52-55. ] | |
[33] | 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学, 2007, 37(6): 804-812. |
[Fang Jingyun, Guo Zhaodi, Piao Shilong, et al. Estimation of land vegetation carbon sink in China from 1981 to 2000[J]. Science in China, 2007, 37(6): 804-812. ] | |
[34] | 孙丽娜. 山西省森林生物量碳密度空间格局和影响因素研究[D]. 太原: 山西大学, 2020. |
[Sun Lina. Study on Spatial Pattern and Driving Factors of Forests Biomass Carbon Density in Shanxi Province, China[D]. Taiyuan: Shanxi University, 2020. ] | |
[35] | 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010. |
[Li Haikui, Lei Yuancai. Estimation and Evaluation of Forest Biomass Carbon Storage in China[M]. Beijing: China Forestry Publishing House, 2010. ] | |
[36] | FAO. Global forest resources assessment 2010. Rome (available at http://www.fao.org/forestry/fra/fra2010/en/) |
[37] | Wang Y, Wang Q X, Wang M B. Similar carbon density of natural and planted forests in the Lüliang Mountains, China[J]. Annals of Forest Science, 2018, 75(3): 1-14. |
[38] | 张耀, 周伟. 安太堡露天矿区复垦地植被覆盖度反演估算研究[J]. 中南林业科技大学学报, 2016, 36(11): 113-119. |
[Zhang Yao, Zhou Wei. Remote estimation of vegetation fraction for reclaimed areas of Antaibao opencast mine[J]. Journal of Central South University of Forestry and Technology, 2016, 36(11): 113-119. ] | |
[39] | 郭春燕, 曹银贵, 武玉珍, 等. 安太堡露天煤矿刺槐人工林乔木层碳密度动态特征[J]. 山西大学学报(自然科学版), 2022, 45(2): 487-493. |
[Guo Chunyan, Cao Yingui, Wu Yuzhen, et al. Carbon density dynamics of the tree layer of Robinia pseudoacacia plantation in Antaibao opencast coal mine[J]. Journal of Shanxi University (Natural Science Edition), 2022, 45(2): 487-493. ] | |
[40] | 李叶鑫, 吕刚, 刁立夫, 等. 露天煤矿排土场不同植被类型持水能力评价[J]. 水土保持学报, 2017, 31(5): 309-314, 320. |
[Li Yexin, Lv Gang, Diao Lifu, et al. Evaluation of water retention capacity of different vegetation types in dump of opencast coal mine[J]. Journal of Soil and Water Conservation, 2017, 31(5): 309-314, 320. ] | |
[41] | 朱嘉磊, 田菊, 孙宾, 等. 北京市松山天然油松林生态系统的碳储量[J]. 水土保持通报, 2016, 36(5): 320-325. |
[Zhu Jialei, Tian Ju, Sun Bin, et al. Carbon storage of natural Pinus tabulaeformuis forest in Songshan Mountain in Beijing City[J]. Bulletin of Soil and Water Conservation, 2016, 36(5): 320-325. ] | |
[42] | 丁壮, 崔若光. 红松人工林生物量碳密度[J]. 东北林业大学学报, 2018, 46(2): 17-21. |
[Ding Zhuang, Cui Ruoguang. Biomass carbon density of Korean Pine plantations[J]. Journal of Northeast Forestry University, 2018, 46(2): 17-21. ] | |
[43] | 刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5): 733-740. |
[Liu Guohua, Fu Bojie, Fang Jingyun. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecological Sinica, 2000, 20(5): 733-740. ] | |
[44] | 孙丽娜, 范晓辉, 王孟本. 山西森林植被碳储量空间分布格局[J]. 山西大学学报(自然科学版), 2018, 41(1): 226-232. |
[Sun Lina, Fan Xiaohui, Wang Mengben. Spatial patterns of forest vegetation carbon stock in Shanxi[J]. Journal of Shanxi University (Natural Science Edition), 2018, 41(1): 226-232. ] | |
[45] | 高述超, 陈毅青, 陈宗铸, 等. 海南岛森林生态系统碳储量及其空间分布特征[J]. 生态学报, 2023, 43(9): 3558-3570. |
[Gao Shuchao, Chen Yiqing, Chen Zongzhu, et al. Carbon storage and its spatial distribution characteristics of forest ecosystems in Hainan Island, China[J]. Acta Ecologica Sinica, 2023, 43(9): 3558-3570. ] | |
[46] | Cheng X Q, Han H R, Kang F F, et al. Variation in biomass and carbon storage by stand age in pine (Pinus tabulaeformis) planted ecosystem in Mt. Taiyue, Shanxi, China[J]. Journal of Plant Interactions, 2014, 9(1): 521-528. |
[47] | Liu Xiaojuan, Trogisch Stefen, He Jinsheng, et al. Tree species richness increases ecosystem carbon storage in subtropical forests[J]. Proceedings Biological Sciences, 2018, 285: 20181240. |
[48] | 朱万泽, 盛哲良, 舒树淼, 等. 川西亚高山天然次生林生态功能恢复综合评价[J]. 应用与环境生物学报, 2021, 27(3): 694-704. |
[Zhu Wanze, Sheng Zheliang, Shu Shumiao, et al. Comprehensive evaluation of ecological function restoration of the natural secondary forests in a subalpine region of western Sichuan[J]. Chinese Journal of Application Environmental Biology, 2021, 27(3): 694-704. ] | |
[49] | Cornelissen J H C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types[J]. Journal of Ecology, 1996, 84(4): 573-582. |
[50] | Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981-2000[J]. Science China Life Sciences, 2007, 50(9): 1341-1350. |
[51] |
雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-22.
doi: 10.12302/j.issn.1000-2006.202108043 |
[Lei Haiqing, Sun Gaoqiu, Zheng Deli. Carbon storage of forest ecosystem in Wenzhou City, Zhejiang Province, China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(5): 20-22. ] | |
[52] | 程小琴, 韩海荣, 康峰峰. 山西油松人工林生态系统生物量、碳积累及其分布[J]. 生态学杂志, 2012, 31(10): 2455-2460. |
[Cheng Xiaoqin, Han Hairong, Kang Fengfeng. Biomass, carbon accumulation and its partitioning of a Pinus tabulaeformis plantation ecosystem in Shanxi Province, China[J]. Chinese Journal of Ecology, 2012, 31(10): 2455-2460. ] | |
[53] | 曹小玉, 杨文龙, 刘悦翠. 马尾松林生态系统碳贮量研究[J]. 西北林学院学报, 2012, 27(5): 45-49, 145. |
[Cao Xiaoyu, Yang Wenlong, Liu Yuecui. Carbon storage quantity of Pinus massoniana ecosystem[J]. Journal of Northwest Forestry University, 2012, 27(5): 45-49, 145. ] | |
[54] | 王丽美, 姜永涛, 郭广猛. 森林生物量的根冠分配特征及其影响因子分析[J]. 南阳师范学院学报, 2020, 19(1): 44-50. |
[Wang Limei, Jiang Yongtao, Guo Guangmeng. Biomass allocation between root and shoot and its impact factors of forest ecosystems[J]. Journal of Nanyang Normal University, 2020, 19(1): 44-50. ] |
[1] | 戚曌, 闫峰, 席磊, 曹晓明, 邹佳秀, 冯益明. 鄂尔多斯高原砒砂岩区植被恢复潜力[J]. 干旱区研究, 2024, 41(9): 1583-1592. |
[2] | 包志鑫, 袁立敏, 武红燕, 鲁海涛, 韩照日格图. 呼伦贝尔草原风蚀坑植物分布空间异质效应[J]. 干旱区研究, 2024, 41(7): 1185-1194. |
[3] | 王鑫盈, 马超, 吕立群, 张岩. 黄土高原不同土地利用类型区浅层滑坡侵蚀特征分析——以蔡家川滑坡事件为例[J]. 干旱区研究, 2024, 41(4): 697-705. |
[4] | 张元梅, 孙桂丽, 鲁艳, 李利, 张志浩, 张栋栋. 昆仑山北坡两种优势荒漠灌木的生物量预测模型[J]. 干旱区研究, 2024, 41(2): 284-292. |
[5] | 李娜, 信会男, 赖宁, 李永福, 吕彩霞, 耿庆龙, 段婧婧, 陈署晃. 不同土地利用方式对农田土壤有机碳组分及土壤微生物量碳的影响[J]. 干旱区研究, 2024, 41(10): 1789-1796. |
[6] | 周静,孙永峰,丁杰萍,白浩江,马祥,王旭洋,罗永清. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464. |
[7] | 孙丹阳,魏建新,杨辽,王杰,唐宇琪,巴比尔江·迪力夏提. 深度学习方法下GEDI数据的天然云杉林地上生物量反演[J]. 干旱区研究, 2023, 40(9): 1472-1483. |
[8] | 王思淇, 张建军, 张彦勤, 赵炯昌, 胡亚伟, 李阳, 唐鹏, 卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151. |
[9] | 魏亚娟, 刘美英, 解云虎, 李星. 吉兰泰盐湖防护体系建立38 a以来土壤养分特征[J]. 干旱区研究, 2023, 40(5): 747-755. |
[10] | 邱巡巡, 曹广超, 张进虎, 张卓, 刘梦琳. 祁连山南坡青海云杉林碳密度随海拔分布特征[J]. 干旱区研究, 2023, 40(4): 615-622. |
[11] | 梁博明, 刘新, 郝媛媛, 楚彬, 唐庄生. 基于5种植被指数的荒漠区植被生物量提取研究[J]. 干旱区研究, 2023, 40(4): 647-654. |
[12] | 徐梦琦, 高艳菊, 张志浩, 黄彩变, 曾凡江. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响[J]. 干旱区研究, 2023, 40(2): 257-267. |
[13] | 张建华, 张琨, 刘勇, 张红, 张凯权, 周晓阳, 徐龙超. 山西省露天煤矿复垦区典型人工林凋落物持水性能研究[J]. 干旱区研究, 2023, 40(12): 2043-2052. |
[14] | 吴际,杨光,韩雪莹,温雅琴,杨溢文,李文龙,刘一. 不同人工林对奈曼沙区土壤团聚体的影响[J]. 干旱区研究, 2022, 39(6): 1832-1841. |
[15] | 张康,聂志刚,王钧,李广. 温度升高下降水和施氮对旱地春小麦产量和生物量影响的模拟与分析[J]. 干旱区研究, 2022, 39(6): 1966-1975. |
|