[1] |
王涛, 吴薇, 薛娴, 等. 近50年来中国北方沙漠化土地的时空变化[J]. 地理学报, 2004, 59(2): 203-212.
doi: 10.11821/xb200402006
|
|
[Wang Tao, Wu Wei, Xue Xian, et al. Spatial-temporal changes of sandy desertified land during last 5 decades in Northern China[J]. Acta Geographica Sinica, 2004, 59(2): 203-212.]
doi: 10.11821/xb200402006
|
[2] |
赵哈林, 赵学勇, 张铜会, 等. 科尔沁沙地沙漠化过程及其恢复机理[M]. 北京: 海洋出版社, 2003.
|
|
[Zhao Halin, Zhao Xueyong, Zhang Tonghui, et al. Desertification Process and Its Restoration Mechanisms in the Horqin Sand Land[M]. Beijing: China Ocean Press, 2003.]
|
[3] |
国家林业和草原局. 中国荒漠化和沙化状况公报[EB/OL]. [2015-12-29]. http://www.forestry.gov.cn.
|
|
[National Forestry and Grassland Administration. Bulletin of the Desertification and Sandification State of China[EB/OL]. [2015-12-29]. http://www.forestry.gov.cn. . ]
|
[4] |
国家林业和草原局. 我国荒漠化和沙化土地面积持续减少[EB/OL]. [2022-12-31]. .
|
|
[National Forestry and Grassland Administration. Bulletin of the Desertification and Sandification State of China[EB/OL]. [2022-12-31]. http://www.forestry.gov.cn. ]
|
[5] |
程磊磊, 却晓娥, 杨柳, 等. 中国荒漠生态系统: 功能提升、服务增效[J]. 中国科学院院刊, 2020, 35(6): 690-698.
|
|
[Cheng Leilei, Que Xiao’e, Yang Liu, et al. China’s desert ecosystem: Functions rising and services enhancing[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(6): 690-698.]
|
[6] |
朱教君, 郑晓. 关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果[J]. 生态学杂志, 2019, 38(5): 1600-1610.
|
|
[Zhu Jiaojun, Zheng Xiao. The prospects of development of the Three-North Afforestation Program (TNAP): On the basis of the results of the 40-year construction general assessment of the TNAP[J]. Chinese Journal of Ecology, 2019, 38(5): 1600-1610.]
|
[7] |
赵学勇, 张春民, 左小安, 等. 科尔沁沙地沙漠化土地恢复面临的挑战. 应用生态学报, 2009, 20(7): 1559-1564.
pmid: 19899451
|
|
[Zhao Xueyong, Zhang Chunmin, Zuo Xiao’an, et al. Challenge to the desertification reversion in Horqin Sandy Land[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1559-1564.]
pmid: 19899451
|
[8] |
罗永清, 李玉强. 基于“山水林田湖草沙生命共同体”理念的我国北方沙地治理模式探索[J]. 赤峰学院学报(自然科学版), 2022, 38(10): 1-5.
|
|
[Luo Yongqing, Li Yuqiang. Exploration on the management mode of northern sandy land based on the concept of “Life community of mountains, rivers, forests, fields, lakes, grass and sand”[J]. Journal of Chifeng University (Natural Science Edition), 2022, 38(10): 1-5.]
|
[9] |
Li Y Q, Zhou X H, Brandle J, et al. Temporal progress in improving carbon and nitrogen storage by grazing exclosure practice in a degraded land area of China’s Horqin Sandy Grassland[J]. Agriculture Ecosystems and Environment, 2012, 159: 55-61.
doi: 10.1016/j.agee.2012.06.024
|
[10] |
Luo Y Q, Zhao X Y, Li Y Q, et al. Wind disturbance on litter production affects soil carbon accumulation in degraded sandy grasslands in semi-arid sandy grassland[J]. Ecological Engineering, 2021, 171: 106373.
doi: 10.1016/j.ecoleng.2021.106373
|
[11] |
罗永清, 赵学勇, 王涛, 等. 沙地植物根系特征及其与土壤有机碳和总氮的关系[J]. 草业学报, 2017, 26(8): 200-206.
doi: 10.11686/cyxb2016378
|
|
[Luo Yongqing, Zhao Xueyong, Wang Tao, et al. Plant root traits and its relationships with soil organic carbon and soil total nitrogen in degraded sandy grassland[J]. Acta Prataculturae Sinica, 2017, 26(8): 200-206.]
doi: 10.11686/cyxb2016378
|
[12] |
Li Y Q, Zhao H L, Zhao X Y, et al. Effects of grazing and livestock exclusion on soil physical and chemical properties in desertified sandy grassland, Inner Mongolia, northern China[J]. Environmental Earth Sciences, 2011, 63: 771-783.
doi: 10.1007/s12665-010-0748-3
|
[13] |
赵哈林, 周瑞莲, 赵学勇, 等. 科尔沁沙地沙漠化正、逆过程的地面判别方法[J]. 中国沙漠, 2008, 28(1): 8-15.
|
|
[Zhao Halin, Zhou Ruilian, Zhao Xueyong, et al. Ground discriminance on positive and negative processes of land desertification in Horqin Sand Land[J]. Journal of Desert Research, 2008, 28(1): 8-15.]
|
[14] |
詹瑾, 韩丹, 杨红玲, 等. 科尔沁沙地植被恢复过程中群落组成及多样性演变特征[J]. 中国沙漠, 2022, 42(2): 194-206.
doi: 10.7522/j.issn.1000-694X.2021.00103
|
|
[Zhan Jin, Han Dan, Yang Hongling, et al. Evolution characteristics of vegetation community composition and diversity during the restoration of Horqin Sandy Land in 2005-2019[J]. Journal of Desert Research, 2022, 42(2): 194-206.]
doi: 10.7522/j.issn.1000-694X.2021.00103
|
[15] |
Sayer E J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems[J]. Biological Reviews, 2006, 81: 1-31.
doi: 10.1017/S1464793105006846
pmid: 16460580
|
[16] |
Leff J W, Wieder W R, Taylor P G, et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest[J]. Global Change Biology, 2012, 18: 2969-2979.
doi: 10.1111/j.1365-2486.2012.02749.x
pmid: 24501071
|
[17] |
Lajtha K, Bowden R D, Nadelhoffer K. Litter and root manipulations provide insights into soil organic matter dynamics and stability[J]. Soil Science Society of America Journal, 2014, 78: 261-269.
doi: 10.2136/sssaj2013.08.0370nafsc
|
[18] |
Huyler A, Chappelka A H, Prior S A, et al. Influence of aboveground tree biomass, home age, and yard maintenance on soil carbon levels in residential yards[J]. Urban Ecosystems, 2014, 17: 787-805.
doi: 10.1007/s11252-014-0350-7
|
[19] |
Mehta N, Neeta R, Pandya N R, et al. Impact of rainfall gradient on aboveground biomass and soil organic carbon dynamics of forest covers in Gujarat, India[J]. Ecological Research, 2014, 29: 1053-1063.
doi: 10.1007/s11284-014-1192-8
|
[20] |
丰思捷, 赵艳云, 李元恒, 等. 内蒙古典型草原表层土壤有机碳储量差异及影响因素[J]. 中国草地学报, 2019, 41(2): 116-120.
|
|
[Feng Sijie, Zhao Yanyun, Li Yuanheng, et al. The differences and influencing factors of topsoil organic carbon storage in typical steppe of Inner Mongolia[J]. Chinese Journal of Grassland, 2019, 41(2): 116-120.]
|
[21] |
程燕明, 马红彬, 马菁, 等. 不同放牧方式对荒漠草原土壤碳氮储量及固持的影响[J]. 草业学报, 2022, 31(10): 18-27.
doi: 10.11686/cyxb2021412
|
|
[Cheng Yanming, Ma Hongbin, Ma Jing, et al. Effects of different grazing patterns on soil carbon and nitrogen storage and sequestration in desert steppee[J]. Acta Prataculturae Sinica, 2022, 31(10): 18-27.]
doi: 10.11686/cyxb2021412
|
[22] |
Lavallee J M, Soong J L, Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26: 261-273.
doi: 10.1111/gcb.14859
pmid: 31587451
|
[23] |
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105.
doi: 10.1038/nmicrobiol.2017.105
pmid: 28741607
|
[24] |
Cotrufo M F, Ranalli M G, Haddix M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience, 2019, 12(12): 989-994.
doi: 10.1038/s41561-019-0484-6
|
[25] |
Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10): 776-779.
doi: 10.1038/NGEO2520
|
[26] |
刘源, 李晓晶, 段玉玺, 等. 库布齐沙漠东部植被恢复对土壤生态化学计量的影响[J]. 干旱区研究, 2022, 39(3): 924-932.
|
|
[Liu Yuan, Li Xiaojing, Duan Yuxi, et al. Effects of vegetation restoration on soil stoichiometry in the eastern Hobq Desert[J]. Arid Zone Research, 2022, 39(3): 924-932.]
|
[27] |
王新源, 赵学勇, 李玉霖, 等. 科尔沁沙地沙丘生境单元凋落物运移特征[J]. 中国沙漠, 2016, 36(1): 167-173.
doi: 10.7522/j.issn.1000-694X.2015.00009
|
|
[Wang Xinyuan, Zhao Xueyong, Li Yulin, et al. Characteristics of litter migration in habitat units of dunes in the Horqin Sandy Land[J]. Journal of Desert Research, 2016, 36, 167-173.]
doi: 10.7522/j.issn.1000-694X.2015.00009
|
[28] |
尹华军, 刘庆. 西南亚高山森林根系分泌物生态学研究[M]. 北京: 科学出版社, 2019.
|
|
[Yin Huajun, Liu Qing. Ecological Studies on Root Exudation of Subalpine Forest in Southwest China[M]. Beijing: Science Press, 2019.]
|
[29] |
Crow S E, Lajtha K, Filley T R, et al. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change[J]. Global Change Biology, 2009, 15: 2003-2019.
doi: 10.1111/gcb.2009.15.issue-8
|
[30] |
Liu X F, Lin T C, Vadeboncoeur M A, et al. Root litter inputs exert greater influence over soil C than does aboveground litter in a subtropical natural forest[J]. Plant and Soil, 2019, 444: 489-499.
doi: 10.1007/s11104-019-04294-5
|
[31] |
Bolinder M A, Kätterer T, Andrén O, et al. Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish long-term field experiment[J]. Canadian Journal of Soil Science, 2012, 92: 821-833.
doi: 10.4141/cjss2012-036
|
[32] |
Chari N R, Taylor B N. Soil organic matter formation and loss are mediated by root exudates in a temperate forest[J]. Nature Geoscience, 2022, 15(12): 1011-1016.
doi: 10.1038/s41561-022-01079-x
|
[33] |
Keiluweit M, Bougoure, J J, Nico, P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6): 588-595.
doi: 10.1038/nclimate2580
|