干旱区研究 ›› 2023, Vol. 40 ›› Issue (12): 1938-1948.doi: 10.13866/j.azr.2023.12.07 cstr: 32277.14.j.azr.2023.12.07
吴蕊1,2,3(),曹红雨1,2,3,高广磊1,2,3(),于明含1,2,3,丁国栋1,2,3,张英1,2,3,赵珮杉1,2,3
收稿日期:
2023-04-30
修回日期:
2023-08-14
出版日期:
2023-12-15
发布日期:
2023-12-18
作者简介:
吴蕊(2000-),女,硕士研究生,主要从事荒漠化防治相关研究. E-mail: 基金资助:
WU Rui1,2,3(),CAO Hongyu1,2,3,GAO Guanglei1,2,3(),YU Minghan1,2,3,DING Guodong1,2,3,ZHANG Ying1,2,3,ZHAO Peishan1,2,3
Received:
2023-04-30
Revised:
2023-08-14
Published:
2023-12-15
Online:
2023-12-18
摘要:
为揭示水盐处理下科尔沁沙地土壤细菌群落结构及其对油莎豆(Cyperus esculentus)的影响。以吉林省前郭尔罗斯灌区油莎豆农田为研究对象,开展水、盐双因素(水处理:50%、70%、100%标准灌溉定额;盐处理:无盐胁迫、轻度盐胁迫、中度盐胁迫)随机区组野外控制试验,构建土壤细菌分子生态网络筛选关键菌种,并研究揭示其与油莎豆生长的相互关系。结果表明:(1) 油莎豆农田土壤细菌优势菌门为变形菌门(Proteobacteria)(22.85%±3.80%)、酸杆菌门(Acidobacteriota)(20.02%±3.21%)和放线菌门(Actinobacteriota)(18.85%±2.41%)。优势菌属为RB41属、鞘氨醇单胞菌属(Sphingomonas)和红色杆菌属(Rubrobacter)。水盐环境对土壤细菌Alpha多样性无显著影响(P>0.05)。(2) 100%标准灌溉定额灌溉处理细菌种间共存关系更强,50%标准灌溉定额灌溉处理细菌种间互作程度、连接紧密度最高。无盐胁迫细菌群落生态网络复杂度、互作程度最高,中度盐胁迫细菌物种之间的共存关系更强。(3) 随灌溉量增加,关键菌群数量增加,中度盐胁迫关键菌群数量达到最大。水盐处理下油莎豆土壤关键菌种为红色杆菌属、RB41属、Dongia属、类固醇杆菌属(Steroidobacter)、硝化螺旋菌属(Nitrospira)、鞘氨醇单胞菌属、溶杆菌属和Luteolibacter属。(4) 灌溉量变化对油莎豆株高、冠幅、分蘖数、地上干重、羧化酶、脯氨酸和超氧物歧化酶活性具有显著影响(P<0.05);施盐量变化对油莎豆的株高、地上干重、脱落酸、可溶性糖、过氧化物酶活性和丙二醛具有显著影响(P<0.05)。鞘氨醇单胞菌属、硝化螺旋菌属、溶杆菌属、Dongia属、RB41属、类固醇杆菌属和Luteolibacter属与油莎豆生长生理性状显著相关(P<0.05)。水盐环境改变了土壤细菌群落组成、分子网络及关键菌种,关键菌种则与油莎豆生长生理特征具有显著相关性。研究结果有助于深入揭示水盐生境下油莎豆农田土壤细菌群落结构及其生态功能,为油莎豆适应性种植和稳产高产提供理论依据。
吴蕊, 曹红雨, 高广磊, 于明含, 丁国栋, 张英, 赵珮杉. 科尔沁沙地水盐处理对油莎豆农田土壤细菌群落及植株生理特性的影响[J]. 干旱区研究, 2023, 40(12): 1938-1948.
WU Rui, CAO Hongyu, GAO Guanglei, YU Minghan, DING Guodong, ZHANG Ying, ZHAO Peishan. Effects of irrigation and salinity treatments on the soil bacterial community and plant physiological characteristics of Cyperus esculentus farmland in Horqin Sandy Land[J]. Arid Zone Research, 2023, 40(12): 1938-1948.
表1
科尔沁沙地水盐处理下土壤细菌群落Alpha多样性指数"
处理 | Chao1指数 | Shannon指数 | Coverage指数 | |
---|---|---|---|---|
灌溉处理 | W0 | 5771.9±690.13a | 10.13±0.41a | 0.95±0.01a |
W1 | 5843.85±294.29a | 10.27±0.25a | 0.95±0.01a | |
W2 | 5928.31±759.23a | 10.14±0.49a | 0.95±0.01a | |
施盐处理 | S1 | 5912.15±527.4a | 10.25±0.26a | 0.95±0.01a |
S2 | 5971.39±319.48a | 10.3±0.14a | 0.95±0.01a | |
S3 | 5660.52±843.56a | 9.98±0.57a | 0.95±0.01a |
表2
科尔沁沙地水盐处理下土壤细菌分子生态网络和随机网络拓扑参数"
拓扑参数 | 灌溉处理 | 施盐处理 | ||||||
---|---|---|---|---|---|---|---|---|
W0 | W1 | W2 | S1 | S2 | S3 | |||
分子生态网络 | 节点数 | 189 | 197 | 179 | 185 | 180 | 180 | |
边数 | 1371 | 1099 | 688 | 1823 | 564 | 895 | ||
正相关连接/% | 58.21 | 56.87 | 78.05 | 54.14 | 56.56 | 75.31 | ||
平均度 | 14.508 | 11.157 | 7.687 | 19.708 | 6.267 | 9.944 | ||
平均路径长度 | 3.426 | 4.008 | 3.978 | 3.309 | 4.560 | 3.775 | ||
平均聚类系数 | 0.509 | 0.507 | 0.491 | 0.543 | 0.420 | 0.460 | ||
模块性 | 0.488 | 0.410 | 0.650 | 0.328 | 0.643 | 0.574 | ||
随机网络 | 平均路径长度 | 2.230 | 2.453 | 2.758 | 1.998 | 3.052 | 2.495 | |
平均聚类系数 | 0.073 | 0.056 | 0.050 | 0.108 | 0.038 | 0.052 | ||
模块性 | 0.207 | 0.250 | 0.322 | 0.176 | 0.361 | 0.262 |
表3
科尔沁沙地水盐处理下油莎豆生长生理指标"
生长生理指标 | 灌溉处理 | 施盐处理 | |||||
---|---|---|---|---|---|---|---|
W0 | W1 | W2 | S1 | S2 | S3 | ||
株高/cm | 51.81±6.23a | 54.7±6.99a | 47.70±7.65b | 54.48±8.16a | 50.85±7.33ab | 48.89±5.90b | |
冠幅/cm | 64.61±10.71c | 91.94±10.10a | 76.70±9.54b | 77.30±15.34a | 77.63±14.35a | 78.33±15.99a | |
分蘖数 | 7.33±2.24b | 12.44±4.13a | 11.22±2.44a | 10.56±3.00a | 9.44±3.97a | 11.00±4.21a | |
果实数 | 19.89±10.37a | 24.22±9.60a | 16.44±9.34a | 21.67±10.58a | 18.22±6.67a | 20.67±12.56a | |
地上干重/g | 18.09±5.42b | 25.67±5.29a | 23.39±6.42ab | 25.84±7.83a | 19.75±6.02b | 21.56±3.63ab | |
地下干重/g | 15.48±7.28a | 19.55±7.64a | 15.87±5.87a | 19.64±7.75a | 14.25±5.12a | 17.02±7.39a | |
根冠比 | 0.85±0.25a | 0.79±0.33a | 0.70±0.27a | 0.80±0.32a | 0.75±0.26a | 0.80±0.31a | |
PEP羧化酶活性/(U·g-1) | 4.88±0.29b | 4.55±0.07c | 5.21±0.22a | 4.83±0.25a | 4.76±0.31a | 5.05±0.42a | |
脱落酸ABA/(μg·g-1) | 63.11±4.55a | 60.50±6.06a | 59.33±2.51a | 57.55±3.79b | 62.63±5.61a | 62.76±2.54a | |
可溶性糖SS/(mg·g-1) | 2.94±0.16a | 2.81±0.21a | 2.89±0.15a | 3.03±0.13a | 2.88±0.11b | 2.73±0.15c | |
脯氨酸Pro/(ng·g-1) | 454.97±55.47a | 466.02±28.85a | 405.66±17.3b | 442.28±49.82a | 456.32±51.92a | 428.06±30.11a | |
过氧化物酶活性POD/(mU·g-1) | 4.74±0.28a | 4.95±0.18a | 4.81±0.43a | 4.67±0.30b | 5.14±0.12a | 4.69±0.23b | |
超氧物歧化酶活性SOD/(U·g-1) | 731.90±53.39b | 820.39±31.44a | 666.69±42.93c | 755.51±93.46a | 721.17±64.46a | 742.3±74.22a | |
丙二醛MDA/(nmol·g-1) | 0.99±0.06a | 1.02±0.04a | 1.03±0.09a | 1.02±0.07ab | 1.05±0.03a | 0.97±0.07b |
[1] |
Danierhan S, Shalamu A, Tumaerbai H. Effects of emitter discharge rates on soil salinity distribution and cotton (Gossypium hirsutum L.) yield under drip irrigation with plastic mulch in an arid region of Northwest China[J]. Journal of Arid Land, 2013, 5(1): 51-59.
doi: 10.1007/s40333-013-0141-7 |
[2] | 刘玉兰, 王小宁, 舒垚, 等. 不同产地油莎豆性状及组成分析研究[J]. 中国油脂, 2020, 45(8): 125-129. |
[Liu Yulan, Wang Xiaoning, Shu Yao, et al. Character and composition of Cyperus esculentus from different origins[J]. China Oils and Fats, 2020, 45(8): 125-129. ] | |
[3] | 王艺臻, 丁国栋, 崔欣然, 等. 盐碱复合胁迫对油沙豆生长和光合特性的影响[J]. 干旱区资源与环境, 2022, 36(5): 146-152. |
[Wang Yizhen, Ding Guodong, Cui Xinran, et al. Effects of saline-alkali stress on the growth and photosynthetic characteristics of Cyperus esculentus and the responses of protective enzymes[J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 146-152. ] | |
[4] | 杜宇佳, 高广磊, 陈丽华, 等. 呼伦贝尔沙区土壤细菌群落结构与功能预测[J]. 中国环境科学, 2019, 39(11): 4840-4848. |
[Du Yujia, Gao Guanglei, Chen Lihua, et al. Soil bacteria community structure and function prediction in the Hulun Buir Sandy Area[J]. China Environmental Science, 2019, 39(11): 4840-4848. ] | |
[5] |
王国基, 柴强, 张玉霞, 等. 干旱区玉米专用菌肥对玉米生长特性的影响[J]. 草地学报, 2015, 23(1): 173-179.
doi: 10.11733/j.issn.1007-0435.2015.01.027 |
[Wang Guoji, Chai Qiang, Zhang Yuxia, et al. Effects of maize special biofertilizer on maize growth in arid area[J]. Acta Agrestia Sinica, 2015, 23(1): 173-179. ]
doi: 10.11733/j.issn.1007-0435.2015.01.027 |
|
[6] |
Vurukonda S S K P, Vardharajula S, Shrivastava M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiological Research, 2016, 184: 13-24.
doi: 10.1016/j.micres.2015.12.003 pmid: 26856449 |
[7] | Praveen Kumar G, Mir Hassan Ahmed S K, Desai Suseelendra, et al. In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp[J]. International Journal of Bacteriology, 2014, 2014: 195946. |
[8] |
孙韵雅, 陈佳, 王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报, 2020, 28(5): 1203-1215.
doi: 10.11733/j.issn.1007-0435.2020.05.004 |
[Sun Yunya, Chen Jia, Wang Yue, et al. Advances in growth promotion mechanisms of PGPRs and their effectson improving plant stress tolerance[J]. Acta Agrestia Sinica, 2020, 28(5): 1203-1215. ]
doi: 10.11733/j.issn.1007-0435.2020.05.004 |
|
[9] |
Etesami H, Glick B R. Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants[J]. Environmental and Experimental Botany, 2020, 178: 104124.
doi: 10.1016/j.envexpbot.2020.104124 |
[10] |
Orhan F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum)[J]. Brazilian Journal of Microbiology, 2017, 47(3): 621-627.
doi: 10.1016/j.bjm.2016.04.001 |
[11] |
Pankaj U, Singh D N, Mishra P, et al. Autochthonous halotolerant plant growth-promoting rhizobacteria promote bacoside A yield of Bacopa monnieri (L.) Nash and phytoextraction of salt-affected soil[J]. Pedosphere, 2020, 30(5): 671-683.
doi: 10.1016/S1002-0160(20)60029-7 |
[12] |
李媛媛, 徐婷婷, 艾喆, 等. 锦鸡儿属植物功能性状与根际土壤细菌群落结构的关系[J]. 草业学报, 2022, 31(7): 38-49.
doi: 10.11686/cyxb2021202 |
[Li Yuanyuan, Xu Tingting, Ai Zhe, et al. Relationship between plant functional traits and rhizosphere bacterial community structure of two Caragana species[J]. Acta Prataculturae Sinica, 2022, 31(7): 38-49. ]
doi: 10.11686/cyxb2021202 |
|
[13] |
Fuhrman J A. Microbial community structure and its functional implications[J]. Nature, 2009, 459(7244): 193-199.
doi: 10.1038/nature08058 |
[14] |
Dai L X, Zhang G C, Yu Z P, et al. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil[J]. International Journal of Molecular Sciences, 2019, 20(9): 2265.
doi: 10.3390/ijms20092265 |
[15] | 徐扬, 张冠初, 丁红, 等. 花生根际土壤细菌群落对干旱和盐胁迫的响应[J]. 中国油料作物学报, 2020, 42(6): 985-993. |
[Xu Yang, Zhang Guanchu, Ding Hong, et al. Response of rhizosphere bacterial community structure associated with peanut (Arachis hypogaea L.) to high salinity and drought stress[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 985-993. ] | |
[16] |
Canfora L, Bacci G, Pinzari F, et al. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil?[J]. PloS one, 2014, 9(11): e114658.
doi: 10.1371/journal.pone.0114658 |
[17] |
Banerjee S, Schlaeppi K, van der Heijden M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews. Microbiology, 2018, 16(9): 567-576.
doi: 10.1038/s41579-018-0024-1 pmid: 29789680 |
[18] |
Banerjee S, Walder F, Buchi L, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots[J]. The ISME Journal, 2019, 13(7): 1722-1736.
doi: 10.1038/s41396-019-0383-2 |
[19] |
Chen Z J, Zheng Y, Ding C Y, et al. Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops[J]. Ecotoxicology and Environmental Safety, 2017, 145: 111-118.
doi: S0147-6513(17)30431-1 pmid: 28711820 |
[20] |
Kang Y L, An X R, Ma Y W, et al. Organic amendments alleviate early defoliation and increase fruit yield by altering assembly patterns and of microbial communities and enzymatic activities in sandy pear (Pyrus pyrifolia)[J]. AMB Express, 2021, 11(1): 164.
doi: 10.1186/s13568-021-01322-5 pmid: 34878599 |
[21] | 胡晓婧, 刘俊杰, 魏丹, 等. 东北黑土区不同纬度农田土壤真菌分子生态网络比较[J]. 应用生态学报, 2018, 29(11): 3802-3810. |
[Hu Xiaojing, Liu Junjie, Wei Dan, et al. Comparison on fungal molecular ecological networks of agricultural soils with different latitudes in the black soil region of Northeast China[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3802-3810. ] | |
[22] | 邓超超, 李玲玲, 谢军红, 等. 耕作措施对陇中旱农区土壤细菌群落的影响[J]. 土壤学报, 2019, 56(1): 207-216. |
[Deng Chaochao, Li Lingling, Xie Junhong, et al. Effects of tillage on soil bacterial community in the dryland farming area of central Gansu[J]. Acta Pedologica Sinica, 2019, 56(1): 207-216. ] | |
[23] | 杨立宾, 隋心, 崔福星, 等. 汤旺河国家公园不同演替阶段森林土壤细菌多样性变化规律[J]. 环境科学研究, 2019, 32(3): 458-464. |
[Yang Libin, Sui Xin, Cui Fuxing, et al. Soil bacterial diversity between different forest successional stages in Tangwang River National Park[J]. Research of Environmental Sciences, 2019, 32(3): 458-464. ] | |
[24] |
Bhatti A A, Haq S, Bhat R A. Actinomycetes benefaction role in soil and plant health[J]. Microbial Pathogenesis, 2017, 111: 458-467.
doi: S0882-4010(17)30588-0 pmid: 28923606 |
[25] | 徐飞, 张拓, 怀宝东, 等. 土地利用变化对松花江下游湿地土壤真菌群落结构及功能的影响[J]. 环境科学, 2021, 42(5): 2531-2540. |
[Xu Fei, Zhang Tuo, Huai Baodong, et al. Effects of land use changes on soil fungal community structure and function in the riparian wetland along the downstream of the Songhua River[J]. Environmental Science, 2021, 42(5): 2531-2540. ] | |
[26] |
Zheng W, Xue D M, Li X Z, et al. The responses and adaptations of microbial communities to salinity in farmland soils: A molecular ecological network analysis[J]. Applied Soil Ecology, 2017, 120: 239-246.
doi: 10.1016/j.apsoil.2017.08.019 |
[27] |
Pang Z Q, Chen J, Wang T H, et al. Linking plant secondary metabolites and plant microbiomes: A review[J]. Frontiers in Plant Science, 2021, 12: 621276.
doi: 10.3389/fpls.2021.621276 |
[28] |
Yuan M M, Guo X, Wu L W, et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 2021, 11(4): 343-348.
doi: 10.1038/s41558-021-00989-9 |
[29] |
Zhou H, Gao Y, Jia X H, et al. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China[J]. Soil Biology and Biochemistry, 2020, 144: 107782.
doi: 10.1016/j.soilbio.2020.107782 |
[30] | 颜培, 杜远达, 姜爱霞, 等. 黄河三角洲土壤真菌群落结构及互作网络对盐度的响应[J]. 分子植物育种, 2021, 19(11): 3818-3828. |
[Yan Pei, Du Yuanda, Jiang Aixia, et al. Response of soil fungal community structures and interaction networks to salinity in the Yellow River Delta[J]. Molecular Plant Breeding, 2021, 19(11): 3818-3828. ] | |
[31] | 许小虎, 车宗贤, 赵旭, 等. 长期施用绿肥对小麦玉米间作土壤微生物的影响[J]. 干旱地区农业研究, 2023, 41(1): 33-44. |
[Xu Xiaohu, Che Zongxian, Zhao Xu, et al. Effects of long-term application of green manure on soil microorganisms in wheat maize intercropping[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 33-44. ] | |
[32] | 谭海霞, 彭红丽, 葛振宇, 等. 盐碱土壤修复菌剂对耐盐蒲公英根际土壤微生物群落多样性的影响[J]. 农业生物技术学报, 2023, 31(1): 156-164. |
[Tan Haixia, Peng Hongli, Ge Zhenyu, et al. Effects of salt-alkali soil remediation agents on microbial community diversity rhizosphere soil[J]. Journal of Agricultural Biotechnology, 2023, 31(1): 156-164. ] | |
[33] | 李靖宇, 杨瑞, 段晓敏, 等. 白芨滩地区不同生物土壤结皮类型对微生物群落结构和组成的影响[J]. 生态与农村环境学报, 2023, 39(1): 97-106. |
[Li Jingyu, Yang Rui, Duan Xiaomin, et al. Effects of different biological soil crust types on microbial community structure and composition in Baijitan, China[J]. Journal of Ecology and Rural Environment, 2023, 39(1): 97-106. ] | |
[34] |
Ai C, Zhang S Q, Zhang X, et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation[J]. Geoderma, 2018, 319: 156-166.
doi: 10.1016/j.geoderma.2018.01.010 |
[35] | 张英英, 魏玉杰, 吴之涛, 等. 不同种植年限对特殊药材土壤化学性质和微生物多样性的影响[J]. 干旱地区农业研究, 2023, 41(1): 150-159. |
[Zhang Yingying, Wei Yujie, Wu Zhitao, et al. Effects of different cropping years on soil chemical properties of special medicine source plant[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 150-159. ] | |
[36] | 黎妍妍, 李亚培, 孙玉晓, 等. 外源橙皮素对烟草青枯病及根围土壤细菌群落的影响[J]. 中国烟草科学, 2022, 43(5): 38-43. |
[Li Yanyan, Li Yapei, Sun Yuxiao, et al. The effects of exogenous hesperetin on tobacco bacterial wilt infection and bacterial community of rhizosphere soil[J]. Chinese Tobacco Science, 2022, 43(5): 38-43. ] | |
[37] | 张帆, 谢琛, 肖宝莹, 等. 木醋液对番茄根际土壤理化性质及细菌群落多样性的影响[J/OL]. 吉林农业大学学报: 1-8[2023-11-04]. https://doi.org/10.13327/j.jjlau.2022.1751. |
[Zhang Fan, Xie Chen, Xiao Baoying, et al. Effects of wood vinegar on physicochemical properties and bacteria community diversity of tomato rhizosphere soil[J]. Journal of Jilin Agricultural University: 1-8[2023-11-04]. https://doi.org/10.13327/j.jjlau.2022.1751. ] | |
[38] | 钟融, 王培如, 孙培杰, 等. 长年耕作对北方旱作麦田土壤细菌群落结构及理化性质的影响[J]. 环境科学, 2023, 44(10): 5800-5812. |
[Zhong Rong, Wang Peiru, Sun Peijie, et al. Effects of long-term tillage on soil bacterial community structure and physicochemical properties of dryland wheat fields in Northern China[J]. Environmental Science, 2023, 44(10): 5800-5812. ] | |
[39] |
Zhang Y, Gao Q Z, Ganjurjav H, et al. Grazing exclusion changed the complexity and keystone species of alpine meadows on the Qinghai-Tibetan Plateau[J]. Frontiers in Ecology and Evolution, 2021, 9: 638157.
doi: 10.3389/fevo.2021.638157 |
[40] | 杨馥霞, 汤玲, 贺欢, 等. 不同熏蒸剂对草莓连作土壤养分和微生物群落的影响[J]. 微生物学通报, 2023, 50(6): 2452-2467. |
[Yang Fuxia, Tang Ling, He Huan, et al. Effects of different fumigants on soil nutrients and microbial communities of strawberry continuous cropping[J]. Microbiology China, 2023, 50(6): 2452-2467. ] | |
[41] |
Liu H W, Brettell L E, Qiu Z G, et al. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8): 733-743.
doi: S1360-1385(20)30114-X pmid: 32345569 |
[42] |
Shemshura O N, Bekmakhanova N E, Mazunina M N, et al. Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus[J]. FEMS microbiology letters, 2016, 363(5): fnw026.
doi: 10.1093/femsle/fnw026 |
[43] | 刘铎, 丛日春, 党宏忠, 等. 柳树幼苗渗透调节物质对中、碱性钠盐响应的差异性[J]. 生态环境学报, 2014, 23(9): 1531-1535. |
[Liu Duo, Cong Richun, Dang Hongzhong, et al. Comparative effects of salt and alkali stresses on plant physiology of willow[J]. Ecology and Environmental Sciences, 2014, 23(9): 1531-1535. ] | |
[44] | 梁培鑫, 唐榕, 郭睿, 等. 混合盐碱胁迫对油莎豆生长及生理性状的影响[J]. 干旱区资源与环境, 2022, 36(10): 185-192. |
[Liang Peixin, Tang Rong, Guo Rui, et al. Effect of mixed salt-alkaline stress on growth and physiological characteristics in Cyperus esculentus L[J]. Journal of Arid Land Resources and Environment, 2022, 36(10): 185-192. ] | |
[45] |
Isah T. Stress and defense responses in plant secondary metabolites production[J]. Biological Research, 2019, 52(1): 1-25.
doi: 10.1186/s40659-018-0209-0 |
[46] |
李倩, 袁玲, 杨水平, 等. 连作对黄花蒿生长及土壤细菌群落结构的影响[J]. 中国中药杂志, 2016, 41(10): 1803-1810.
doi: 10.4268/cjcmm20161007 pmid: 28895324 |
[Li Qian, Yuan Ling, Yang Shuiping, et al. Influence of continuous cropping on growth of Artemisia annua and bacterial communities in soil[J]. China Journal of Chinese Materia Medica, 2016, 41(10): 1803-1810. ]
doi: 10.4268/cjcmm20161007 pmid: 28895324 |
|
[47] | 钟旻依, 张新全, 杨昕颖, 等. 植物对重金属铬胁迫响应机制的研究进展[J]. 草业科学, 2019, 36(8): 1962-1975. |
[Zhong Minyi, Zhang Xinquan, Yang Xinying, et al. Recent advances in plant response to chromium stress[J]. Pratacultural Science, 2019, 36(8): 1962-1975. ] | |
[48] | 牛倩云, 韩彦莎, 徐丽霞, 等. 作物轮作对谷田土壤理化性质及谷子根际土壤细菌群落的影响[J]. 农业环境科学学报, 2018, 37(12): 2802-2809. |
[Niu Qianyun, Han Yansha, Xu Lixia, et al. Effects of crop rotation on soil physicochemical properties and bacterial community of foxtail millet rhizosphere soil[J]. Journal of Agro-Environment Science, 2018, 37(12): 2802-2809. ] | |
[49] | 吴桐桐, 徐基胜, 周云鹏, 等. 黄河三角洲不同生境土壤理化特性及细菌群落结构特征[J]. 农业环境科学学报, 2022, 41(10): 2250-2261. |
[Wu Tongtong, Xu Jisheng, Zhou Yunpeng, et al. Variation in soil properties and bacterial community composition of different habitat soils in the Yellow River Delta, China[J]. Journal of Agro-Environment Science, 2022, 41(10): 2250-2261. ] |
[1] | 曹秭琦, 路战远, 任永峰, 赵小庆, 王建国, 侯智慧, 韩云飞, 王登云, 尚学燕, 段锐. 不同施氮水平对油莎豆农田土壤养分表观平衡和块茎产量的影响[J]. 干旱区研究, 2024, 41(1): 71-79. |
[2] | 李娟, 刘阳, 刘光琇, 程亮, 郭青云, 张威, 章高森. 鄯善库木塔格沙漠北缘细菌群落结构特征及影响因素[J]. 干旱区研究, 2023, 40(8): 1358-1368. |
[3] | 吉吉佳门, 程一本, 谌玲珑, 万鹏翔, 张祎晖, 杨文斌, 白旭赢, 王涛. 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023, 40(5): 756-766. |
[4] | 马浩文, 王永芳, 郭恩亮. 基于GEE的翁牛特旗土地沙漠化遥感监测[J]. 干旱区研究, 2023, 40(3): 504-516. |
[5] | 马兴羽,黄彩变,曾凡江,李向义,张玉林,丁雅,高艳菊,徐梦琪. 沙地盐胁迫对油莎豆幼苗生理生长影响的模拟研究[J]. 干旱区研究, 2022, 39(6): 1862-1874. |
[6] | 廖贵云,吴秀芹,谭锦,李丹,冯梦馨. WEPS模型在乌兰布和沙漠油莎豆(Cyperus esculentus)种植区的应用[J]. 干旱区研究, 2022, 39(5): 1504-1513. |
[7] | 丁雅,杨建明,李利,张志浩,曾凡江. 南疆盆地亏缺灌溉和覆膜对油莎豆生物量及产量的影响[J]. 干旱区研究, 2022, 39(3): 883-892. |
[8] | 徐接亮,张凤华,李变变,王家平,程志博. 施肥对油莎豆根际微生物群落特性的影响[J]. 干旱区研究, 2021, 38(6): 1741-1749. |
[9] | 崔珍珍,马超,陈登魁. 1982—2015年科尔沁沙地植被时空变化及气候响应[J]. 干旱区研究, 2021, 38(2): 536-544. |
[10] | 曹文梅,刘廷玺,王喜喜,王冠丽,李东方,童新. 科尔沁沙丘草甸相间地区土地利用与覆被识别[J]. 干旱区研究, 2021, 38(2): 526-535. |
[11] | 孙姗姗, 刘新平, 魏水莲, 张铜会, 何玉惠, 车力木格, 吕朋, 王明明. 沙地植物幼苗生长对降水和风速变化的响应[J]. 干旱区研究, 2019, 36(4): 870-877. |
[12] | 包永志, 刘廷玺, 段利民, 王冠丽, 祁秀娇, 黄天宇, 黎明扬. 科尔沁沙地混生小叶锦鸡儿和人工杨树光合特性及其对气候的响应 [J]. 干旱区研究, 2019, 36(2): 420-429. |
[13] | 张晶, 左小安, 吕朋, 岳喜元, 张婧. 科尔沁沙地典型草地植物功能性状及其相互关系[J]. 干旱区研究, 2018, 35(01): 137-143. |
[14] | 蒋德明,张娜,阿拉木萨,周全来,王永翠,苗仁辉,押田敏雄. 科尔沁沙地人工固沙植被优化配置模式试验研究[J]. 干旱区研究, 2014, 31(1): 149-156. |
[15] | 苗纯萍, 李雪华, 蒋德明. 科尔沁沙地流动沙丘-丘间低地过渡带植被分布特征及种间关联[J]. 干旱区研究, 2013, 30(5): 832-837. |
|