干旱区研究 ›› 2023, Vol. 40 ›› Issue (2): 257-267.doi: 10.13866/j.azr.2023.02.10 cstr: 32277.14.j.azr.2023.02.10
徐梦琦1,2,3,4(),高艳菊1,2,3,4,张志浩1,2,3,黄彩变1,2,3,曾凡江1,2,3,4()
收稿日期:
2022-07-27
修回日期:
2022-10-06
出版日期:
2023-02-15
发布日期:
2023-03-08
通讯作者:
曾凡江. E-mail:zengfj@ms.xjb.ac.cn
作者简介:
徐梦琦(1997-),女,硕士研究生,主要从事荒漠植物生理生态研究. E-mail: 基金资助:
XU Mengqi1,2,3,4(),GAO Yanju1,2,3,4,ZHANG Zhihao1,2,3,HUANG Caibian1,2,3,ZENG Fanjiang1,2,3,4()
Received:
2022-07-27
Revised:
2022-10-06
Published:
2023-02-15
Online:
2023-03-08
摘要:
叶片和根系能通过形态、生理和生物量累积的变化响应干旱胁迫。以策勒绿洲-沙漠过渡带的优势植物疏叶骆驼刺(Alhagi sparsifolia Shap.)为研究对象,通过盆栽试验模拟3种水分条件(充分灌溉CK:土壤含水量占最大田间持水量的70%~75%;轻度胁迫W1:田间持水量的50%~55%;重度胁迫W2:田间持水量的25%~30%),分析一年生骆驼刺幼苗叶片和根系生长、生理的变化特征,揭示骆驼刺对干旱胁迫的适应策略。结果表明:(1) 干旱显著抑制骆驼刺地上和地下各器官生长,主要表现为:叶面积、根长、根表面积、根组织密度以及叶和根的可溶性糖含量显著减小(P<0.05);叶组织密度、叶干物质含量、比根长以及叶和根的脯氨酸、丙二醛含量增大。(2) 生长前期,各处理地上生物量均占比较大(CK、W1、W2下根冠比分别为0.43±0.14、0.59±0.1、0.83±0.83);而生长后期各处理地下生物量占比较大,其中重度胁迫下根冠比最大(3.12±0.32),表明骆驼刺在生长后期增强了地下部分的资源投入,且这种资源分配特征在重度干旱胁迫下更明显。(3) Pearson相关性分析表明,骆驼刺叶形态与根生理相关的核心性状存在显著的权衡关系(P<0.05),同时叶与根在生理代谢上能够协同变化。初步说明,骆驼刺幼苗在干旱下表现出干物质储存和防御能力高、水分消耗低的适应特征,能够协调叶片和根系的资源分配关系,随胁迫时间的增加逐步形成缓慢投资、保守生长的策略。该结果为该区域荒漠植被恢复和管理提供参考。
徐梦琦, 高艳菊, 张志浩, 黄彩变, 曾凡江. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响[J]. 干旱区研究, 2023, 40(2): 257-267.
XU Mengqi, GAO Yanju, ZHANG Zhihao, HUANG Caibian, ZENG Fanjiang. Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings[J]. Arid Zone Research, 2023, 40(2): 257-267.
表1
干旱胁迫下骆驼刺的生物量累积"
生长时期 | 水分处理 | 叶生物量 | 地上生物量 | 地下生物量 | 根冠比 |
---|---|---|---|---|---|
生长前期 | CK | 8.34±1.31a | 17.71±3.81a | 7.21±1.23a | 0.43±0.14b |
W1 | 4.23±0.76b | 9.05±1.41b | 5.23±0.13ab | 0.59±0.10ab | |
W2 | 1.57±0.01c | 4.59±0.88b | 3.90±1.63b | 0.83±0.24a | |
生长后期 | CK | 4.30±1.16a | 10.45±2.62a | 24.74±8.24a | 2.33±0.32b |
W1 | 2.70±0.15b | 6.65±0.69b | 15.82±1.12a | 2.39±0.12b | |
W2 | 0.67±0.30c | 1.76±0.43c | 5.44±0.99b | 3.12±0.32a |
[1] |
Liu L B, Gudmundsson L, Hauser M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communications, 2020, 11(1): 4892.
doi: 10.1038/s41467-020-18631-1 pmid: 32994398 |
[2] | 孙百生, 钱金平, 赵欢蕊. 西北典型荒漠植物红砂生物量及根系形态特征对降水格局的响应[J]. 生态环境学报, 2018, 27(11): 1993-1999. |
[Sun Baisheng, Qian Jinping, Zhao Huanrui. Response of biomass and root morphology of desert plants Corispermum candelabrum to precipitation change in northwest China[J]. Ecology and Environmental Sciences, 2018, 27(11): 1993-1999.] | |
[3] |
刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325-339.
doi: 10.1360/N052014-00244 |
[Liu Xiaojuan, Ma Keping. Plant functional traits-concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4): 325-339.]
doi: 10.1360/N052014-00244 |
|
[4] | 施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化[J]. 生态学报, 2011, 31(22): 6805-6814. |
[Shi Yu, Wen Zhongming, Gong Shihui. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River basin, Shaanxi Province, China[J]. Acta Ecologica Sinica, 2011, 31(22): 6805-6814.] | |
[5] | Eviner V T, Chapin III F S. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes[J]. Annual Review of Ecology Evolution and Systematics, 2003, 13(34): 455-485. |
[6] | 郑旭, 杨志鑫, 郝东梅, 等. 盐碱地食叶草细根对干旱复水后的响应[J]. 干旱区研究, 2022, 39(1): 240-249. |
[Zheng Xu, Yang Zhixin, Hao Dongmei, et al. Response of Rumex hanus by. roots to drought after rehydration[J]. Arid Zone Research, 2022, 39(1): 240-249.] | |
[7] | 魏圆慧, 梁文召, 韩路, 等. 胡杨叶功能性状特征及其对地下水埋深的响应[J]. 生态学报, 2021, 41(13): 5368-5376. |
[Wei Yuanhui, Liang Wenzhao, Han Lu, et al. Leaf functional traits of Populus euphratica and its response to groundwater depths in Tarim extremely arid area[J]. Acta Ecologica Sinica, 2021, 41(13): 5368-5376.] | |
[8] |
张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006 |
[Zhang Cuimei, Shi Shangli, Wu Fang. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties[J]. Scientia Agricultura Sinica, 2018, 51(5): 868-882.]
doi: 10.3864/j.issn.0578-1752.2018.05.006 |
|
[9] | 尚佳州, 赵瑜琦, 王卫锋, 等. 干旱对碧玉杨幼苗水氮利用与同化物分配的影响[J]. 干旱区研究, 2022, 39(3): 893-899. |
[Shang Jiazhou, Zhao Yuqi, Wang Weifeng, et al. Response of drought on water and nitrogen utilization and carbohydrate distribution of Populus × euramericana‘Biyu’cuttings[J]. Arid Zone Research, 2022, 39(3): 893-899.] | |
[10] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827.
doi: 10.1038/nature02403 |
[11] | 汤东, 程平, 杨建军, 等. 天山北坡山前植物对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1683-1694. |
[Tang Dong, Cheng Ping, Yang Jianjun, et al. Physiological responses of plants to drought stress in the Northern Piedmont, Tianshan Mountains[J]. Arid Zone Research, 2021, 38(6): 1683-1694.] | |
[12] |
Liu G F, Freschet G T, Pan X, et al. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems[J]. New Phytologist, 2010, 188(2): 543-553.
doi: 10.1111/j.1469-8137.2010.03388.x pmid: 20649915 |
[13] |
Craine J M, Lee W G, Bond W J, et al. Environmental constraints on a global relationship among leaf and root traits of grasses[J]. Ecology, 2005, 86(1): 12-19.
doi: 10.1890/04-1075 |
[14] |
Lozano Y M, Aguilar T C A, Flaig I C, et al. Root trait responses to drought are more heterogeneous than leaf trait responses[J]. Functional Ecology, 2020, 34(11): 2224-2235.
doi: 10.1111/1365-2435.13656 |
[15] |
Reich P B, Tjoelker M G, Walters M B, V et al. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light[J]. Functional Ecology, 1998, 12(3): 327-338.
doi: 10.1046/j.1365-2435.1998.00208.x |
[16] |
Eissenstat D M, Wells C E, Yanai R D, et al. Building roots in a changing environment: implications for root longevity[J]. New Phytologist, 2000, 147(1): 33-42.
doi: 10.1046/j.1469-8137.2000.00686.x |
[17] | 荆瑞雪, 张波, 郭平林, 等. 不同生境下骆驼刺与花花柴生态化学计量学特征的比较[J]. 生态学杂志, 2020, 39(3): 733-740. |
[Jing Ruixue, Zhang Bo, Guo Pinglin, et al. The ecological stoichiometric characteristics of Alhagi sparsifolia and Karelinia caspia in different habitats[J]. Chinese Journal of Ecology, 2020, 39(3): 733-740.] | |
[18] | 曾凡江, 张希明, 李小明. 骆驼刺植被及其资源保护与开发的意义[J]. 干旱区地理, 2002, 25(3): 286-288. |
[Zeng Fanjiang, Zhang Ximing, Li Xiaoming. Study on the characteristics of Alhagi and its impact on resource protection and development[J]. Aird Land Geography, 2002, 25(3): 286-288.] | |
[19] |
罗维成, 曾凡江, 刘波, 等. 疏叶骆驼刺根系对土壤异质性和种间竞争的响应[J]. 植物生态学报, 2012, 36(10): 1015-1023.
doi: 10.3724/SP.J.1258.2012.01015 |
[Luo Weicheng, Zeng Fanjiang, Liu Bo, et al. Response of root systems to soil heterogeneity and interspecific competition in Alhagi sparsifolia[J]. Chinese Journal of Plant Ecology 2012, 36(10): 1015-1023.]
doi: 10.3724/SP.J.1258.2012.01015 |
|
[20] | 李向义, 张希明, 何兴元, 等. 沙漠-绿洲过渡带四种多年生植物水分关系特征[J]. 生态学报, 2004, 24(6): 1164-1171. |
[Li Xiangyi, Zhang Ximing, He Xingyuan, et al. Water relation characteristics of four perennial plant species growing in the transition zone between oasis and open desert[J]. Acta Ecologica Sinica, 2004, 24(6): 1164-1171.] | |
[21] | 黄彩变, 曾凡江, 雷加强. 骆驼刺幼苗生长和功能性状对不同水氮添加的响应[J]. 草业学报, 2016, 25(12): 150-160. |
[Huang Caibian, Zeng Fanjiang, Lei Jiaqiang. Growth and functional trait responses of Alhagi sparsifolia seedlings to water and nitrogen addition[J]. Acta Prataculturae Sinica, 2016, 25(12): 150-160.] | |
[22] |
曾凡江, 郭海峰, 刘波, 等. 疏叶骆驼刺幼苗根系生态学特性对水分处理的响应[J]. 干旱区研究, 2009, 26(6): 852-858.
doi: 10.3724/SP.J.1148.2009.00852 |
[Zeng Fanjiang, Guo Haifeng, Liu Bo, et al. Response of ecological properties of roots of Alhagi sparsifolia Shap. seedlings to different irrigation treatments[J]. Arid Zone Research, 2009, 26(6): 852-858.]
doi: 10.3724/SP.J.1148.2009.00852 |
|
[23] | 张晓蕾, 曾凡江, 刘波, 等. 不同土壤水分处理对疏叶骆驼刺幼苗光合特性及干物质积累的影响[J]. 干旱区研究, 2010, 27(4): 649-655. |
[Zhang Xiaolei, Zeng Fanjiang, Liu Bo, et al. Effects of different soil moisture treatments on the photosynthesis and dry matter accumulation of Alhagi sparsifolia seedlings[J]. Arid Zone Research, 2010, 27(4): 649-655.] | |
[24] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 194-260. |
[Li Hesheng. Plant Physiology and Biochemistry Experimental Principles and Techniques[M]. Beijing: Higher Education Press, 2000: 194-260.] | |
[25] | 雷蕾, 刘贤德, 王顺利, 等. 祁连山高山灌丛生物量分配规律及其与环境因子的关系[J]. 生态环境学报, 2011, 20(11): 1602-1607. |
[Lei Lei, Liu Xiande, Wang Shunli, et al. Assignment rule of alpine shrubs biomass and its relationships to environmental factors in Qilian Mountains[J]. Ecology and Environmental Sciences, 2011, 20(11): 1602-1607.] | |
[26] | 何维明. 水分因素对沙地柏实生苗水分和生长特征的影响[J]. 植物生态学报, 2001, 25(1): 11-16. |
[He Weiming. Effects of water factor on hydraulic and growth characteristics of Sabina vulgaris seedlings[J]. Chinese Journal of Plant Ecology, 2001, 25(1): 11-16.] | |
[27] | 张媛媛, 孟欢欢, 周晓兵, 等. 不同生境/萌发类型尖喙牻牛儿苗生物量分配特征[J]. 干旱区研究, 2022, 39(2): 541-550. |
[Zhang Yuanyuan, Meng Huanhuan, Zhou Xiaobing, et al. Biomass allocation patterns of an ephemeral species (Erodium oxyrhinchum) in different habitats and germination types in the Gurbantunggut Desert, China[J]. Arid Zone Research, 2022, 39(2): 541-550.] | |
[28] |
Maltchik L, Rolon A S, Schott P. Effects of hydrological variation on the aquatic plant community in a floodplain palustrine wetland of southern Brazil[J]. Limnology, 2007, 8(1): 23-28.
doi: 10.1007/s10201-006-0192-y |
[29] | Xia J B, Zhang S Y, Li T, et al. Effect of continuous cropping generations on each component biomass of poplar seedlings during different growth periods[J]. The Scientific World Journal, 2014(2): 618421. |
[30] | 吴敏, 张文辉, 周建云, 等. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响[J]. 生态学报, 2014, 34(15): 4223-4233. |
[Wu Ming, Zhang Wenhui, Zhou Jianyun, et al. Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis Bl. seedlings[J]. Acta Ecologica Sinica, 2014, 34(15): 4223-4233.] | |
[31] | 朱铁霞, 高阳, 高凯, 等. 干旱胁迫下菊芋各器官生物量及物质分配规律[J]. 生态学报, 2019, 39(21): 8021-8026. |
[Zhu Tiexia, Gao Yang, Gao Kai, et al. Organ biomass and resource allocation in response to drought stress in Jerusalem artichoke[J]. Acta Ecologica Sinica, 2019, 39(21): 8021-8026.] | |
[32] | 陈明涛, 赵忠. 干旱对4种苗木根系特征及各部分物质分配的影响[J]. 北京林业大学学报, 2011, 33(1): 16-22. |
[Chen Mingtao, Zhao Zhong. Effects of drought on root characteristics and mass allocation in each part of seedlings of four tree species[J]. Journal of Beijing Forestry University, 2011, 33(1): 16-22.] | |
[33] | 李善家, 苏培玺, 张海娜, 等. 荒漠植物叶片水分和功能性状特征及其相互关系[J]. 植物生理学报, 2013, 49(2): 153-160. |
[Li Shanjia, Su Peixi, Zhang Haina, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plants[J]. Plant Physiology Journal 2013, 49(2): 153-160.] | |
[34] |
Wilson K B, Baldocchi D D, Hanson P J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest[J]. Tree Physiology, 2000, 20(9): 565-578.
pmid: 12651421 |
[35] |
Eissenstat D M, Caldwell M. Competitive ability is linked to rates of water extraction[J]. Oecologia, 1988, 75(1): 1-7.
doi: 10.1007/BF00378806 pmid: 28311826 |
[36] |
高丽, 杨劼, 刘瑞香. 不同土壤水分条件下中国沙棘雌雄株叶片形态结构及生理生化特征[J]. 应用生态学报, 2010, 21(9): 2201-2208.
pmid: 21265138 |
[Gao Li, Yang Jie, Liu Ruixiang. Leaf morphological structure and physiological and biochemical characteristics of female and male Hippophae rhamnoides subsp, sinensis under different soil moisture condition[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2201-2208.]
pmid: 21265138 |
|
[37] | 朱军涛, 李向义, 张希明, 等. 灌溉对疏叶骆驼刺(Alhagi sparsifolia)幼苗光合生理指标及渗透物质的影响[J]. 中国沙漠, 2009, 29(4): 697-702. |
[Zhu Juntao, Li Xiangyi, Zhang Ximing, et al. Effect of irrigation on photosynthetic physiology characteristics and osmolytes of Alhagi sparsifolia[J]. Journal of Desert Research, 2009, 29(4): 697-702.] | |
[38] | 李嘉珞, 郭米山, 高广磊, 等. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1704-1712. |
[Li Jialuo, Guo Mishan, Gao Guanglei, et al. Physiological responses of mycorrhizal seedlings of Pinus sylvestris var. mongolica to drought stress[J]. Arid Zone Research, 2021, 38(6): 1704-1712.] | |
[39] | Eissenstat D, Yanai R. The ecology of root lifespan[J]. Advances in Ecological Research, 1997, 27: 1-60. |
[40] |
Silva E N, Ferreira-Silva S L, Viégas R A, et al. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants[J]. Environmental and Experimental Botany, 2010, 69(3): 279-285.
doi: 10.1016/j.envexpbot.2010.05.001 |
[41] | 罗婷, 裴艳辉. 乳油木幼苗对不同水分胁迫强度的生理响应[J]. 西部林业科学, 2020, 49(6): 21-27. |
[Luo Ting, Pei Yanhui. Physiological response of Vitellaria paradora seedlings to different water stress intensity[J]. Journal of West China Forestry Science, 2020, 49(6): 21-27.] | |
[42] | 张美云, 钱吉, 郑师章. 渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化[J]. 复旦学报(自然科学版), 2001, 40(5): 558-561. |
[Zhang Meiyun, Qian Ji, Zheng Shizhang. Studies on free proline and soluble sugar of wild soybeans (Glycine soja) under osmotic stress[J]. Journal of Fudan University, 2001, 40(5): 558-561.] | |
[43] | 马洋, 王雪芹, 韩章勇, 等. 风蚀沙埋对疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspica)幼苗的生理影响[J]. 中国沙漠, 2015, 35(5): 1254-1261. |
[Ma Yang, Wang Xueqin, Han Zhangyong, et al. Effect of wind erosion and sand burial on physiological characters in Alhagi sparsifolia and Karelinia caspica seedlings in the southern margin of the Taklimakan Desert[J]. Journal of Desert Research, 2015, 35(5): 1254-1261.] | |
[44] |
Hodges D M, Delong J M, Fomey C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 1999, 207(4): 604-611.
doi: 10.1007/s004250050524 |
[45] | 刘金环, 曾德慧, Lee D K. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8): 921-925. |
[Liu Jinhuan, Zeng Dehui, Lee D K. Leaf traits and their interrelationships of main plant species in southeast Horqin sandy land[J]. Chinese Journal of Ecology, 2006, 25(8): 921-925.] | |
[46] |
Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155-162.
doi: 10.1046/j.1469-8137.1999.00427.x |
[47] | 赵广帅, 刘珉, 石培礼, 等. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策[J]. 生态学报, 2020, 40(1): 295-309. |
[Zhao Guangshuai, Liu Min, Shi Peili, et al. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau[J]. Acta Ecologica Sinica, 2020, 40(1): 295-309.] | |
[48] |
丁红, 张智猛, 戴良香, 等. 不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应[J]. 生态学报, 2013, 33(17): 5169-5176.
doi: 10.5846/stxb201206120843 |
[Ding Hong, Zhang Zhimeng, Dai Liangxiang, et al. Responses of root morphology of peanut varieties differing in drought tolerance to waterdeficient stress[J]. Acta Ecologica Sinica, 2013, 33(17): 5169-5176.]
doi: 10.5846/stxb201206120843 |
|
[49] |
Chen C W, Yang Y W, Lur H S, et al. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development[J]. Plant and Cell Physiology, 2006, 47(1): 1-13.
doi: 10.1093/pcp/pci216 |
[1] | 戚曌, 闫峰, 席磊, 曹晓明, 邹佳秀, 冯益明. 鄂尔多斯高原砒砂岩区植被恢复潜力[J]. 干旱区研究, 2024, 41(9): 1583-1592. |
[2] | 张斌, 李从娟, 易光平, 刘冉. 梭梭和头状沙拐枣形态及生理生化特性对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(7): 1177-1184. |
[3] | 包志鑫, 袁立敏, 武红燕, 鲁海涛, 韩照日格图. 呼伦贝尔草原风蚀坑植物分布空间异质效应[J]. 干旱区研究, 2024, 41(7): 1185-1194. |
[4] | 张建华, 周晓阳, 郭旭婷, 杜鑫鑫, 安利, 秦浩, 刘勇, 张红, 徐龙超. 露天煤矿人工林植被碳密度分配格局及其影响因素[J]. 干旱区研究, 2024, 41(6): 974-983. |
[5] | 张元梅, 孙桂丽, 鲁艳, 李利, 张志浩, 张栋栋. 昆仑山北坡两种优势荒漠灌木的生物量预测模型[J]. 干旱区研究, 2024, 41(2): 284-292. |
[6] | 李娜, 信会男, 赖宁, 李永福, 吕彩霞, 耿庆龙, 段婧婧, 陈署晃. 不同土地利用方式对农田土壤有机碳组分及土壤微生物量碳的影响[J]. 干旱区研究, 2024, 41(10): 1789-1796. |
[7] | 白炬, 刘晓林, 李申, 梁哲铭, 胥子航, 王永亮, 杨治平. 污泥热碱液对干旱胁迫下小青菜生长的缓解机制[J]. 干旱区研究, 2024, 41(1): 80-91. |
[8] | 颜巧芳, 单立山, 解婷婷, 王红永, 师亚婷. 珍珠柴幼苗叶片和根系形态特征对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(1): 92-103. |
[9] | 周静,孙永峰,丁杰萍,白浩江,马祥,王旭洋,罗永清. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464. |
[10] | 孙丹阳,魏建新,杨辽,王杰,唐宇琪,巴比尔江·迪力夏提. 深度学习方法下GEDI数据的天然云杉林地上生物量反演[J]. 干旱区研究, 2023, 40(9): 1472-1483. |
[11] | 邱巡巡, 曹广超, 张进虎, 张卓, 刘梦琳. 祁连山南坡青海云杉林碳密度随海拔分布特征[J]. 干旱区研究, 2023, 40(4): 615-622. |
[12] | 梁博明, 刘新, 郝媛媛, 楚彬, 唐庄生. 基于5种植被指数的荒漠区植被生物量提取研究[J]. 干旱区研究, 2023, 40(4): 647-654. |
[13] | 孙启兴, 杨晓东, 李浡睿, 孔翠翠, 伊力哈穆江·艾尼弯, 周洁, 吕光辉. 水力性状对荒漠植物群落物种多度分布格局的影响[J]. 干旱区研究, 2023, 40(3): 412-424. |
[14] | 李瑞, 单立山, 解婷婷, 马丽, 杨洁, 李全刚. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435. |
[15] | 沈辉, 张静, 彭兰, 陶冶, 臧永新, 张元明. 琵琶柴和沙拐枣茎的木质部结构的差异性及空间变异特征[J]. 干旱区研究, 2023, 40(12): 1996-2006. |
|