干旱区研究 ›› 2025, Vol. 42 ›› Issue (9): 1726-1741.doi: 10.13866/j.azr.2025.09.16 cstr: 32277.14.AZR.20250916
收稿日期:2025-04-16
修回日期:2025-06-11
出版日期:2025-09-15
发布日期:2025-09-16
通讯作者:
冯强. E-mail: fengqiang921@163.com作者简介:段宝玲(1981-),女,博士,副教授,主要从事资源环境评价与区域规划研究. E-mail: sxnddbl@163.com
基金资助:
DUAN Baoling1(
), FENG Qiang1(
), WANG Jing2, ZHANG Wei1
Received:2025-04-16
Revised:2025-06-11
Published:2025-09-15
Online:2025-09-16
摘要:
汾河流域是黄河中游生态屏障区且工农业发达,研究生态系统服务供需风险对支撑黄河中游生态保护与高质量发展具有参考价值。已有研究在供需风险量化评估及驱动机制解析方面存在不足,本研究设计供需风险计算公式,利用InVEST模型、极限梯度提升树与沙普利加性解释等方法,阐释固碳、土壤保持与产水服务供需匹配的时空分异特征并揭示供需风险影响因素的阈值特征。结果表明:(1) 2000—2020年固碳与土壤保持服务供给与需求水平持续提高。产水服务供给的时间趋势比较复杂但2020年大幅增加,产水需求整体呈现为增加的趋势。固碳与产水需求表现为汾河谷地较高而周围山地较低的空间格局,固碳供给、土壤保持供给与需求的空间趋势与之相反。(2) 20 a间固碳和土壤保持供需比均表现为下降的趋势,2000—2015年多数地区产水服务供需比下降,但2020年出现反转。固碳服务均处于供需风险区,土壤保持供需高、中、低风险区相互交错,其中临汾地区面临最大的固碳与土壤保持供需风险,中、高风险区占流域面积比分别高达21.73%和18.14%。汾河流域主体处于产水服务供需安全区,只有太原和运城地区高风险区占比相对较高,仅为6.74%。(3) 人口密度与GDP以接近线性方式加剧固碳供需风险,年均气温对供需风险促进作用的临界点为10 ℃,超过后风险加剧。土壤保持供需风险随耕地或草地比例增加,坡度<11°或降水量<600 mm时供需风险增加较快,超过后变化缓慢。产水供需风险随降水量和草地比例的增加而降低,随GDP和人口密度的增加而增加,以7 ℃和12 ℃为临界点,年均气温的影响表现为轻度促进、无影响、强烈促进三个阶段。因此,20 a来的生态恢复、经济发展、降水变化共同推动了生态系统服务供给与需求及供需风险的时空格局演变。本研究构建的供需风险指数对生态系统服务供需风险管理具有应用价值。
段宝玲, 冯强, 王晶, 张薇. 汾河流域生态系统服务供需风险量化评估及其影响阈值[J]. 干旱区研究, 2025, 42(9): 1726-1741.
DUAN Baoling, FENG Qiang, WANG Jing, ZHANG Wei. The supply-demand risks of ecosystem services and threshold characteristics of their influencing factors in Fenhe River Basin[J]. Arid Zone Research, 2025, 42(9): 1726-1741.
表1
各地市生态系统服务供需风险等级面积占流域(各地市)面积百分比"
| 服务类型 | 地市 | 高风险区 | 中风险区 | 低风险区 | 安全区 |
|---|---|---|---|---|---|
| 固碳 | 太原市 | 4.62(28.87) | 4.25(26.54) | 7.14(44.59) | 0.00(0.00) |
| 忻州市 | 0.00(0.00) | 0.12(1.36) | 8.63(98.64) | 0.00(0.00) | |
| 吕梁市 | 4.45(23.75) | 8.41(44.89) | 5.88(31.36) | 0.00(0.00) | |
| 晋中市 | 6.80(29.18) | 10.39(44.6) | 6.11(26.22) | 0.00(0.00) | |
| 运城市 | 5.45(74.76) | 1.84(25.24) | 0.00(0.00) | 0.00(0.00) | |
| 临汾市 | 11.52(44.45) | 10.21(39.41) | 4.18(16.14) | 0.00(0.00) | |
| 土壤保持 | 太原市 | 3.35(20.90) | 5.39(33.66) | 5.96(37.23) | 1.32(8.21) |
| 忻州市 | 3.20(36.62) | 3.57(40.83) | 1.82(20.77) | 0.16(1.78) | |
| 吕梁市 | 2.11(11.28) | 6.00(32.00) | 8.95(47.79) | 1.67(8.93) | |
| 晋中市 | 8.16(35.03) | 6.99(29.98) | 6.40(27.46) | 1.75(7.53) | |
| 运城市 | 1.61(22.04) | 2.30(31.52) | 1.92(26.36) | 1.46(20.08) | |
| 临汾市 | 10.70(41.29) | 7.44(28.72) | 5.51(21.25) | 2.26(8.74) | |
| 产水 | 太原市 | 4.35(27.13) | 3.20(19.99) | 2.53(15.82) | 5.94(37.06) |
| 忻州市 | 0.00(0.00) | 0.05(0.61) | 0.42(4.76) | 8.28(94.63) | |
| 吕梁市 | 0.07(0.39) | 0.04(0.21) | 0.85(4.54) | 17.77(94.86) | |
| 晋中市 | 0.11(0.49) | 0.49(2.11) | 2.15(9.24) | 20.54(88.16) | |
| 运城市 | 2.39(32.74) | 2.46(33.69) | 0.37(5.12) | 2.07(28.45) | |
| 临汾市 | 0.17(0.64) | 1.17(4.52) | 1.09(4.20) | 23.49(90.64) |
| [1] | Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis[M]. Washington, DC: Island Press, 2005. |
| [2] | 李双成. 生态系统服务地理学[M]. 北京: 科学出版社, 2014. |
| [Li Shuangcheng. The Geography of Ecosystem Services[M]. Beijing: Science Press, 2014.] | |
| [3] | Xiao S, Zhao Y L, Li H, et al. Realization of integrated regional ecological management based on ecosystem service supply and demand flow networks: An example from a dominant mineral resources development area[J]. Remote Sensing, 2024, 16(21): 4021. |
| [4] | de Knegt B, Marjolein E L, Solen L C, et al. Growing mismatches of supply and demand of ecosystem services in the Netherlands[J]. Journal of Environmental Management, 2025, 373: 123442. |
| [5] | Li J Y, Chen X, De Maeyer P, et al. Investigating the supply-demand gap of farmland ecosystem services to advance sustainable development goals (SDGs) in Central Asia[J]. Agricultural Water Management, 2025, 312: 109419. |
| [6] | Burkhard B, Kroll F, Nedkov S, et al. Mapping ecosystem service supply, demand and budgets[J]. Ecological Indicators, 2012, 21: 17-29. |
| [7] | Tao Y, Wang H N, Ou W X, et al. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region[J]. Land Use Policy, 2018, 72: 250-258. |
| [8] | Chen D S, Li J, Yang X N, et al. Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the YanHe watershed[J]. Ecosystem Services, 2020, 43: 101117. |
| [9] | Li D L, Wu S Y, Liu L B, et al. Evaluating regional water security through a freshwater ecosystem service flow model: A case study in Beijing-Tianjian-Hebei region, China[J]. Ecological Indicators, 2017, 81: 159-170. |
| [10] | Qiu H H, Bai Y C, Han H R, et al. Ecosystem service supply and demand relationship and spatial identification of driving threshold in Loess Plateau of China[J]. Ecological Engineering, 2025, 212: 107534. |
| [11] |
冯强, 赵文武, 段宝玲. 生态系统服务权衡强度与供需匹配度的关联性分析——以山西省为例[J]. 干旱区研究, 2022, 39(4): 1222-1233.
doi: 10.13866/j.azr.2022.04.23 |
|
[Feng Qiang, Zhao Wenwu, Duan Baoling. Relationship between trade-off intensity of ecosystem services and matching degree of supply and demand: A case study in Shanxi Province[J]. Arid Zone Research, 2022, 39(4): 1222-1233.]
doi: 10.13866/j.azr.2022.04.23 |
|
| [12] | Fusaro L, Nardella L, Manes F, et al. Supply and demand mismatch analysis to improve regulating ecosystem services in Mediterranean urban areas: Insights from four Italian Municipalities[J]. Ecological Indicators, 2023, 155: 110928. |
| [13] | Li J, Jiang H, Bai Y, et al. Indicators for spatial-temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China[J]. Ecological Indicators, 2016, 60: 1008-1016. |
| [14] | Wang Z, Zhang L, Li X, et al. Integrating ecosystem service supply and demand into ecological risk assessment: A comprehensive framework and case study[J]. Landscape Ecology, 2021, 36: 2977-2995. |
| [15] |
朱月华, 侯宗东, 徐彩仙, 等. 基于生态系统服务供需关系的甘肃白龙江流域生态风险识别与管理[J]. 地理科学, 2023, 43(3): 423-433.
doi: 10.13249/j.cnki.sgs.2023.03.005 |
|
[Zhu Yuehua, Hou Zongdong, Xu Caixian, et al. Ecological risk identification and management based on ecosystem service supply and demand relationship in the Bailongjiang River Watershed of Gansu Province[J]. Scientia Geographica Sinica, 2023, 43(3): 423-433.]
doi: 10.13249/j.cnki.sgs.2023.03.005 |
|
| [16] | Shen J, Li S, Wang H, et al. Understanding the spatial relationships and drivers of ecosystem service supply-demand mismatches towards spatially-targeted management of social-ecological system[J]. Journal of Cleaner Production, 2023, 406: 136882. |
| [17] | Gong J, Dai X, Wang L, et al. The impact of urbanization on the supply-demand relationship of ecosystem services in the Yangtze River Middle Reaches Urban Agglomeration[J]. Remote Sensing, 2023, 15(19): 4749. |
| [18] | Chen Y R, Qiao X N, Yang Y J, et al. Identifying the spatial relationships and drivers of ecosystem service supply-demand matching: A case of Yiluo River Basin[J]. Ecological Indicators, 2024, 163: 112122. |
| [19] | Zhai T L, Ma Y B, Huang L Y, et al. Research on the spatiotemporal evolution characteristics and driving mechanisms of supply-demand risks of ecosystem services in the Yellow River Basin integrating the hierarchy of needs theory[J]. Ecological Indicators, 2025, 171: 113229. |
| [20] | Zhang Z Y, Tong Z M, Zhang L T, et al. What are the dominant factors and optimal driving threshold for the synergy and tradeoff between ecosystem services, from a nonlinear coupling perspective?[J]. Journal of Cleaner Production, 2023, 422: 138609. |
| [21] | Lundberg S M, Lee S I. A unified approach to interpreting model predictions[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017: 4768-4777. |
| [22] |
苏迎庆, 刘庚, 赵景波, 等. 基于FLUS模型的汾河流域生态空间多情景模拟预测[J]. 干旱区研究, 2021, 38(4): 1152-1161.
doi: 10.13866/j.azr.2021.04.27 |
|
[Su Yingqing, Liu Geng, Zhao Jingbo, et al. Multi-scenario simulation prediction of ecological space in the Fenhe River Basin using the FLUS model[J]. Arid Zone Research, 2021, 38(4): 1152-1161.]
doi: 10.13866/j.azr.2021.04.27 |
|
| [23] |
吴朝巧, 林菲, 牛俊杰, 等. 山西中部城市群生态系统服务对土地利用格局变化的响应[J]. 干旱区研究, 2024, 41(7): 1153-1166.
doi: 10.13866/j.azr.2024.07.07 |
|
[Wu Zhaoqiao, Lin Fei, Niu Junjie, et al. Response of ecosystem service to land use pattern change in the Shanxi central urban agglomeration[J]. Arid Zone Research, 2024, 41(7): 1153-1166.]
doi: 10.13866/j.azr.2024.07.07 |
|
| [24] | Su Y, Ma X, Feng Q, et al. Patterns and controls of ecosystem service values under different land-use change scenarios in a mining-dominated basin of northern China[J]. Ecological Indicators, 2023, 151: 110321. |
| [25] |
杨洁, 谢保鹏, 张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应[J]. 应用生态学报, 2020, 31(8): 2731-2739.
doi: 10.13287/j.1001-9332.202008.015 |
|
[Yang Jie, Xie Baopeng, Zhang Degang. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2731-2739.]
doi: 10.13287/j.1001-9332.202008.015 |
|
| [26] | Feng Q, Zhao W W, Ding J Y, et al. Estimation of the cover and management factor based on stratified coverage and remote sensing indices: A case study in the Loess Plateau of China[J]. Journal of Soils and Sediments, 2018, 18(3): 775-790. |
| [27] | Feng Q, Zhao W W, Hu X P, et al. Trading-off ecosystem services for better ecological restoration: A case study in the Loess Plateau of China[J]. Journal of Cleaner Production, 2020, 257: 120469. |
| [28] | 国家发展和改革委员会, 国家统计局. 生态产品总值核算规范[M]. 北京: 人民出版社. 2022. |
| [National Development and Reform Commission, National Bureau of Statistics. Specification for the Calculation of the Gross Ecosystem Product[M]. Beijing: People's Publishing House, 2022.] | |
| [29] | 汪晓珍, 吴建召, 吴普侠, 等. 2000—2015年黄土高原生态系统水源涵养、土壤保持和NPP服务的时空分布与权衡/协同关系[J]. 水土保持学报, 2021, 35(4): 114-121. |
| [Wang Xiaozhen, Wu Jianzhao, Wu Puxia, et al. Spatial and temporal distribution and trade-offs/synergies of water conservation, soil conservation and NPP services in the Loess Plateau ecosystem from 2000 to 2015[J]. Journal of Soil and Water Conservation, 2021, 35(4): 114-121.] | |
| [30] |
张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960.
doi: 10.11821/dlxb202005005 |
|
[Zhang Kun, Lv Yihe, Fu Bojie, et al. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau[J]. Acta Geographica Sinica, 2020, 75(5): 949-960.]
doi: 10.11821/dlxb202005005 |
|
| [31] | Zhang B, Tian L, Yang Y, et al. Revegetation does not decrease water yield in the Loess Plateau of China[J]. Geophysical Research Letters, 2022, 49: e2022GL098025. |
| [32] | 赵奕博, 于洋, 孙保平, 等. 山西省产水服务供需时空变化[J]. 水土保持学报, 2023, 37(6): 126-133. |
| [Zhao Yibo, Yu Yang, Sun Baoping, et al. Research on the spatiotemporal changes of supply and demand for water yield in Shanxi Province[J]. Journal of Soil and Water Conservation, 2023, 37(6): 126-133.] | |
| [33] | 吴树荣, 潘换换, 姬倩倩, 等. 基于生态系统服务的山西黄河流域保护优先区识别[J]. 生态学报, 2022, 42(20): 8126-8137. |
| [Wu Shurong, Pan Huanhuan, Ji Qianqian, et al. Identification of priority conservation areas in the Yellow River Basin of Shanxi Province based on ecosystem services[J]. Acta Ecologica Sinica, 2022, 42(20): 8126-8137.] | |
| [34] |
徐铭璟, 冯强, 吕萌. 生态系统服务权衡及其影响因素——以黄河流域山西段为例[J]. 干旱区研究, 2024, 41(3): 467-479.
doi: 10.13866/j.azr.2024.03.11 |
|
[Xu Mingjing, Feng Qiang, Lyu Meng. Tradeoffs of ecosystem services and their influencing factors: A case study of the Shanxi Section of the Yellow River Basin[J]. Arid Zone Research, 2024, 41(3): 467-479.]
doi: 10.13866/j.azr.2024.03.11 |
|
| [35] | Xu M, Feng Q, Zhang S, et al. Ecosystem services supply-demand matching and its driving factors: A case study of the Shanxi section of the Yellow River Basin, China[J]. Sustainability, 2023, 15(14): 11016. |
| [36] | Zhang X, Wang Y, Yuan X F, et al. Identifying ecosystem service supply-demand imbalance for sustainable land management in China's Loess Plateau[J]. Land Use Policy, 2022, 123: 106423. |
| [37] | Feng Q, Duan B, Zhang X. Relationship between ecosystem services trade-offs and supply-demand balance along a precipitation gradient: A case study in the central Loess Plateau of China[J]. Land, 2024, 13(7): 1057. |
| [38] | 荀斌, 郑莹, 范蓉, 等. 陕西省生态系统服务权衡/协同关系阈值识别[J]. 生态学报, 2024, 44(17): 7431-7444. |
| [Xun Bin, Zheng Ying, Fan Rong, et al. Assessment of trade-off/synergy relationships between ecosystem services and identification of ecological restoration thresholds[J]. Acta Ecologica Sinica, 2024, 44(17): 7431-7444.] | |
| [39] | Li Z, Hu B, Ren Y. The supply-demand budgets of ecosystem service response to urbanization: insights from urban-rural gradient and major function-oriented areas[J]. Remote Sensing, 2022, 14(22): 5670. |
| [1] | 王艺璇, 邓晓红, 范慧文青, 韩江哲, 李宗省. 水资源承载力评价耦合模型的研究进展与干旱区应用[J]. 干旱区研究, 2025, 42(6): 1004-1020. |
| [2] | 林洲艳, 王霞迎, 夏元平. 基于多特征融合的面向对象冰川边界提取[J]. 干旱区研究, 2025, 42(6): 1032-1042. |
| [3] | 王立媛, 张勇. 甘肃省土地利用转型时空格局演化及多情景模拟[J]. 干旱区研究, 2025, 42(4): 695-707. |
| [4] | 龙威夷, 施建飞, 李双媛, 孙金金, 王玉刚. 流域绿洲土壤盐分多模型反演效果评估[J]. 干旱区研究, 2024, 41(7): 1120-1130. |
| [5] | 李若楠, 李均力, 李爽爽, 刘帅琪, 都伟冰. 基于Sentinel-2的依连哈比尔尕冰川变化监测[J]. 干旱区研究, 2024, 41(6): 940-950. |
| [6] | 洪国军, 谢俊博, 张灵, 范振岐, 喻彩丽, 付仙兵, 李旭. 基于多光谱影像的阿拉尔垦区棉田土壤盐分反演[J]. 干旱区研究, 2024, 41(5): 894-904. |
| [7] | 包佳玉, 李祥龙, 胡启文, 李涛. 新疆能源消费碳排放时空特征及能源结构调整路径探讨[J]. 干旱区研究, 2024, 41(3): 490-498. |
| [8] | 周义, 索文姣. 基于CWSI的汾河流域干旱时空变化特征[J]. 干旱区研究, 2024, 41(2): 191-199. |
| [9] | 杨斐, 张文韬, 张飞民, 王澄海. 1961—2022年祁连山气候特征及其变化[J]. 干旱区研究, 2024, 41(10): 1627-1638. |
| [10] | 胡亚男, 裴浩, 姜艳丰, 苗百岭, 贾成朕. 1991—2021年内蒙古降水酸碱度时空变化特征分析[J]. 干旱区研究, 2023, 40(4): 552-562. |
| [11] | 许丽婷,刘海红,黄丽洁,王钰帆. 2000—2020年汾河流域生态环境与水源涵养时空变化[J]. 干旱区研究, 2023, 40(2): 313-325. |
| [12] | 张恩月, 郑君焱, 苏迎庆, 张蕾, 张鹏飞, 刘庚. 基于情景模拟的流域低碳土地利用格局优化研究——以汾河流域为例[J]. 干旱区研究, 2023, 40(2): 203-212. |
| [13] | 王娟, 王钊, 郭斌, 何慧娟, 董金芳. 陕西黄河流域植被碳利用率时空特征及对气候的敏感性研究[J]. 干旱区研究, 2023, 40(12): 1959-1968. |
| [14] | 张昊琛,萨楚拉,孟凡浩,罗敏,王牧兰,高红豆. 内蒙古地表冻融指数动态变化与驱动因素分析[J]. 干旱区研究, 2022, 39(6): 1996-2008. |
| [15] | 邬晓丹,罗敏,孟凡浩,萨楚拉,尹超华,包玉海. 气候暖湿化背景下新疆极端气候事件时空演变特征分析[J]. 干旱区研究, 2022, 39(6): 1695-1705. |
|
||