干旱区研究 ›› 2025, Vol. 42 ›› Issue (9): 1599-1611.doi: 10.13866/j.azr.2025.09.05 cstr: 32277.14.AZR.20250905
汪彩琴1(
), 邵佳时2, 扶黛叶2, 张道勇1(
), 潘响亮2
收稿日期:2025-06-05
修回日期:2025-06-11
出版日期:2025-09-15
发布日期:2025-09-16
通讯作者:
张道勇. E-mail: zhangdaoyong@zjut.edu.cn作者简介:汪彩琴(1992-),女,博士,讲师,主要从事土壤改良与土壤修复等研究. E-mail: cqwang92@zjut.edu.cn
基金资助:
WANG Caiqin1(
), SHAO Jiashi2, FU Daiye2, ZHANG Daoyong1(
), PAN Xiangliang2
Received:2025-06-05
Revised:2025-06-11
Published:2025-09-15
Online:2025-09-16
摘要:
干旱区作为全球微塑料(Microplastics,MPs)的重要源汇区域,其独特的气候条件和人类活动模式塑造了微塑料污染的特殊性。本文系统梳理了近年来干旱区微塑料的来源与污染特征、迁移规律及生态风险。污染特征方面,干旱区土壤微塑料丰度呈现显著空间异质性,纤维状微塑料占比达64%~92%,聚乙烯(Polyethylene,PE)、聚丙烯(Polypropylene,PP)和尼龙为主要成分,其中农膜残留是主要来源。迁移机制上,风蚀和沙尘暴事件主导局地至区域尺度传输,纤维状微塑料因高长径比和低密度更易通过大气环流实现跨境迁移;电场与风场耦合作用延长了微塑料的大气驻留时间。生态风险方面,微塑料通过改变土壤理化性质(如孔隙结构、持水性)、干扰微生物代谢及诱导植物氧化应激,对生态系统产生多维度影响。未来需重点关注多尺度模型耦合、微塑料-污染物复合效应及标准化监测体系的建立。
汪彩琴, 邵佳时, 扶黛叶, 张道勇, 潘响亮. 干旱区微塑料污染来源、迁移规律与生态风险[J]. 干旱区研究, 2025, 42(9): 1599-1611.
WANG Caiqin, SHAO Jiashi, FU Daiye, ZHANG Daoyong, PAN Xiangliang. Sources, migration and ecological risks of microplastic pollution in arid regions[J]. Arid Zone Research, 2025, 42(9): 1599-1611.
表1
干旱区不同地点不同介质中的微塑料丰度"
| 地点 | 水 | 沉积物 | 土壤 | 空气 | 参考文献 |
|---|---|---|---|---|---|
| 内蒙古高原湖泊 | 0.5~12.6 个·L-1 | 50~325 个·L-1 | - | - | [ |
| 黄土高原,黄河 | 51.1~686.7 个·kg-1 | - | - | - | [ |
| 青藏高原,青海湖 | 0.05× 105~7.6× 105 个·km-2 | 50~1292 个·km-2 | - | - | [ |
| 伊朗,马哈鲁湖 | 10.4 个·kg-1 | 57.1 个·kg-1 | - | - | [ |
| 川藏 | - | - | 76.2~159.6 个·kg-1 | - | [ |
| 黄土高原 | - | - | 1667~4333 个·kg-1 | - | [ |
| 新疆,阿勒泰 | - | - | 1.1×104~7.8×104 个·kg-1 | - | [ |
| 新疆,石河子 | - | - | 80.3~1075.6 个·kg-1 | - | [ |
| 伊朗,德黑兰 | - | - | - | 0.74~1 个·m-3 | [ |
| 伊朗,阿瓦兹 | - | - | - | 0~0.02 个·m-3 | [ |
| 埃及,大开罗地区 | - | - | - | 30~87 个·m-3 | [ |
| [87] | Bandopadhyay S, Martin-Closas L, Pelacho A M, et al. Biodegradable plastic mulch films: Impacts on soil microbial communities and ecosystem functions[J]. Frontiers in Microbiology, 2018, 9(9): 819. |
| [88] | Reay M K, Graf M, Murphy M, et al. Higher potential leaching of inorganic and organic additives from biodegradable compared to conventional agricultural plastic mulch film[J]. Journal of Hazardous Materials, 2025, 5(488): 137147. |
| [89] | Wang P, Liu T, Liu J, et al. Effects of different colored polyethylene mulching films on bacterial communities from soil during enrichment incubation[J]. Ecotoxicology and Environmental Safety, 2022, 246(46): 114160. |
| [90] | 曹林杰. 不同类型农膜降解性能和污染特征及其对土壤理化影响[D]. 咸阳: 西北农林科技大学, 2023. |
| [Cao Linjie. Degradation and Pollution Characteristics of Different Types of Agricultural Film and their Effects on Soil Physicochemical Properties[D]. Xianyang: Northwest Agriculture and Forestry University, 2023.] | |
| [91] | Sun Q, Zhang X, Liu C, et al. The content of PAEs in field soils caused by the residual film has a periodical peak[J]. Science of the Total Environment, 2023, 864(52): 161078. |
| [92] | Zang H, Zhou J, Marshall M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?[J]. Soil Biology and Biochemistry, 2020, 148(52): 107926. |
| [93] | Qi R, Jones D L, Li Z, et al. Behavior of microplastics and plastic film residues in the soil environment: A critical review[J]. Science of the Total Environment, 2020, 703(49): 134722. |
| [94] | Liu X, Wang Z, Shi G, et al. Effects of microplastics and salt single or combined stresses on growth and physiological responses of maize seedlings[J]. Physiologia Plantarum, 2025, 177(1): e70106. |
| [95] | Mao R, Hu Y, Zhang S, et al. Microplastics in the surface water of Wuliangsuhai Lake, northern China[J]. Science of the Total Environment, 2020, 723(49): 137820. |
| [96] | 薛颖昊. 我国农田残膜污染特征及聚乙烯微塑料对水生动物的毒性效应研究[D]. 沈阳: 沈阳农业大学, 2023. |
| [1] |
de Souza Machado A A, Kloas W, Zarfl C, et al. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Change Biology, 2018, 24(4): 1405-1416.
doi: 10.1111/gcb.14020 pmid: 29245177 |
| [2] | Sahai H, Aguilera Del Real A M, Alcayde A, et al. Key insights into microplastic pollution in agricultural soils: A comprehensive review of worldwide trends, sources, distribution, characteristics and analytical approaches[J]. Trends in Analytical Chemistry, 2025, 185(45): 118176. |
| [3] | Sun H, Ai L, Wu X, et al. Effects of microplastic pollution on agricultural soil and crops based on a global meta-analysis[J]. Land Degradation & Development, 2024, 35(2): 551-567. |
| [4] | Yang Z, Lü F, Zhang H, et al. A neglected transport of plastic debris to cities from farmland in remote arid regions[J]. Science of the Total Environment, 2022, 807(51): 150982. |
| [5] | Abbasi S, Turner A, Hoseini M, et al. Microplastics in the Lut and Kavir Deserts, Iran[J]. Environmental Science & Technology, 2021, 55(9): 5993-6000. |
| [6] | Luo X, Zhang Y, Kang S, et al. Atmospheric emissions of microplastics entrained with dust from potential source regions[J]. Journal of Hazardous Materials, 2025, 488(51): 137509. |
| [7] | Abbasi S, Jaafarzadeh N, Zahedi A, et al. Microplastics in the atmosphere of Ahvaz City, Iran[J]. Journal of Environmental Sciences, 2023, 126(35): 95-102. |
| [8] | Rezaei M, Abbasi S, Pourmahmood H, et al. Microplastics in agricultural soils from a semi-arid region and their transport by wind erosion[J]. Environmental Research, 2022, 212(56): 113213. |
| [9] | Banks J R, Heinold B, Schepanski K. Impacts of the desiccation of the Aral Sea on the central Asian dust life-cycle[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(21): e2022JD036618. |
| [10] | Li H, Liu H, Lin Q, et al. The hidden threat of microplastics in desert environments: Environmental impact, challenges, and response measures[J]. Sustainability, 2025, 17(5): 1897. |
| [11] | 严昌荣, 刘恩科, 舒帆, 等. 我国地膜覆盖和残留污染特点与防控技术[J]. 农业资源与环境学报, 2014, 31(2): 95-102. |
| [96] | [Xue Yinghao. Characteristics of Residual Film Pollution in Farmland and Toxicity Effects of Polyethylene Microplastics to Aquatic Animal in China[D]. Shenyang: Shenyang Agricultural University, 2023.] |
| [97] | 蔡亚云, 赵佳玥, 李文锋, 等. 不同粒径塑料微颗粒在斑马鱼腮组织中的积累及其对蒽毒性的影响[J]. 应用与环境生物学报, 2017, 23(6): 1154-1158. |
| [Cai Yayun, Zhao Jiayue, Li Wenfeng, et al. Retention of polystyrene particles of different sizes in zebrafish gills and their effect on toxicity of anthracene to gill cells[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(6): 1154-1158.] | |
| [98] | Yan M, Nie H, Xu K, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou City and Pearl River estuary, China[J]. Chemosphere, 2019, 217(48): 879-886. |
| [99] | Ma H, Pu S, Liu S, et al. Microplastics in aquatic environments: Toxicity to trigger ecological consequences[J]. Environmental Pollution, 2020, 261(34): 114089. |
| [100] | Sussarellu R, Suquet M, Thomas Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences, 2016, 113(9): 2430-2435. |
| [101] | Kim S W, An Y J. Edible size of polyethylene microplastics and their effects on springtail behavior[J]. Environmental Pollution, 2020, 266(34): 115255. |
| [102] | Carbery M, O'Connor W, Palanisami T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health[J]. Environment International, 2018, 115(41): 400-409. |
| [103] | 熊雄, 吴辰熙. 湖泊——内陆水体微塑料污染的热点区域[J]. 自然杂志, 2021, 43(4): 243-250. |
|
[Xiong Xiong, Wu Chenxi. Lakes—hotspots of microplastic pollution in inland water bodies[J]. Chinese Journal of Nature, 2021, 43(4): 243-250.]
doi: 10.3969/j.issn.0253-9608.2021.04.002 |
|
| [104] | Choi D, Bang J, Kim T, et al. In vitro chemical and physical toxicities of polystyrene microfragments in human-derived cells[J]. Journal of Hazardous Materials, 2020, 400(46): 123308. |
| [105] | Long X, Fu T M, Yang X, et al. Efficient atmospheric transport of microplastics over Asia and adjacent oceans[J]. Environmental Science & Technology, 2022, 56(10): 6243-6252. |
| [106] | Cao Y, Lin H, Zhang K, et al. Microplastics: A major source of phthalate esters in aquatic environments[J]. Journal of Hazardous Materials, 2022, 15(432):128731. |
| [107] | Zhang Q Q, Ma Z R, Cai Y Y, et al. Agricultural plastic pollution in China: Generation of plastic debris and emission of phthalic acid esters from agricultural films[J]. Environmental Science & Technology, 2021, 55(18): 12459-12470. |
| [108] | Wittassek M, Koch H M, Angerer J, et al. Assessing exposure to phthalates-The human biomonitoring approach[J]. Molecular Nutrition & Food Research, 2011, 55(1): 7-31. |
| [109] | Yen T H, Lin-Tan D T, Lin J L. Food safety involving ingestion of foods and beverages prepared with phthalate-plasticizer-containing clouding agents[J]. Journal of the Formosan Medical Association, 2011, 110(11): 671-684. |
| [110] | Karamianpour J, Arfaeinia H, Vakilabadi D R, et al. Accumulation, sources, and health risks of phthalic acid esters (PAEs) in road dust from heavily industrialized, urban and rural areas in southern Iran[J]. Heliyon, 2023, 9(12): e23129. |
| [111] | Selvaraj K K, Mubarakali Habibunisha, Rathinam Maniraj, et al. Cumulative exposure and dietary risk assessment of phthalates in bottled water and bovine milk samples: A preliminary case study in Tamil Nadu, India[J]. Human and Ecological Risk Assessment: An International Journal, 2016, 22(5): 1166-1182. |
| [112] | Dong Y, Gao M, Song Z, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259(34): 113892. |
| [113] | Sahai H, García Valverde M, Murcia Morales M, et al. Exploring sorption of pesticides and PAHs in microplastics derived from plastic mulch films used in modern agriculture[J]. Chemosphere, 2023, 333(52): 138959. |
| [114] | Moncrieffe R, Masry M, Cai B, et al. Study of the ageing and the sorption of polyaromatic hydrocarbons as influencing factors on the effects of microplastics on blue mussel[J]. Aquatic Toxicology, 2023, 262(43): 106669. |
| [11] | [Yan Changrong, Liu Enke, Shu Fan, et al. Review of agricultural plastic mulching and its residual pollution and prevention measures in China[J]. Journal of Agricultural Resources and Environment, 2014, 31(2): 95-102.] |
| [12] | Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612(47): 422-435. |
| [13] | Huang Y, Liu Q, Jia W, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260(34): 114096. |
| [14] | 程万莉, 樊廷录, 王淑英, 等. 我国西北覆膜农田土壤微塑料数量及分布特征[J]. 农业环境科学学报, 2020, 39(11): 2561-2568. |
| [Cheng Wanli, Fan Tinglu, Wang Shuying, et al. Quantity and distribution of microplastics in film mulching farmland soil of Northwest China[J]. Journal of Agro-Environment Science, 2020, 39(11): 2561-2568.] | |
| [15] | Yang J, Song K, Tu C, et al. Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China[J]. Science of the Total Environment, 2023, 858(52): 159774. |
| [16] | Jiries A, Al-Omari A, Fraihat S, et al. Abundance and distribution of microplastics in irrigation canal water in Jordan[J]. Desalination and Water Treatment, 2024, 318(16): 100409. |
| [17] | 陈荣龙, 陈延华, 黄珊, 等. 陕西关中农田土壤中塑料碎片和微塑料残留及其累积特征研究[J]. 中国生态农业学报(中英文), 2022, 30(10): 1649-1658. |
| [Chen Ronglong, Chen Yanhua, Huang Shan, et al. Residues and accumulation characteristics of plastic fragments and micro-plastics in farmland soil of Guanzhong Plain, Shaanxi[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1649-1658.] | |
| [18] | Yu Y, Zhang Z, Zhang Y, et al. Abundances of agricultural microplastics and their contribution to the soil organic carbon pool in plastic film mulching fields of Xinjiang, China[J]. Chemosphere, 2023, 316(52): 137837. |
| [19] | Salehi Z, Hashemi S H, Flury M. Micro-and mesoplastics in farmlands with different irrigation water sources[J]. Water, Air, & Soil Pollution, 2023, 234(4): 267. |
| [20] | Jia Z, Wei W, Wang Y, et al. Occurrence characteristics and risk assessment of microplastics in agricultural soils in the loess hilly gully area of Yan' an, China[J]. Science of the Total Environment, 2024, 912(53): 169627. |
| [21] | 郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展[J]. 环境化学, 2021, 40(4): 1100-1111. |
| [Hao Aihong, Zhao Baowei, Zhang Jian, et al. Research progress on pollution status and ecological risk of microplastics in soil[J]. Environmental Chemistry, 2021, 40(4): 1100-1111.] | |
| [22] | Harms I K, Diekötter T, Troegel S, et al. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany[J]. Science of the Total Environment, 2021, 758(50): 143615. |
| [23] | Piehl S, Leibner A, Löder M G J, et al. Identification and quantification of macro-and microplastics on an agricultural farmland[J]. Scientific Reports, 2018, 8(1): 17950. |
| [24] | Akca M O, Gündoğdu S, Akca H, et al. An evaluation on microplastic accumulations in Turkish soils under different land uses[J]. Science of the Total Environment, 2024, 911(53): 168609. |
| [25] | Sunil M, Mithun N, Kalthur G, et al. Analysis of microplastics in the estuary lying along the coastal belt of the Arabian Sea[J]. Case Studies in Chemical and Environmental Engineering, 2024, 10(5): 100804. |
| [26] | Hoshyari E, Hassanzadeh N, Keshavarzi B, et al. Characterization of microplastic, metals associated and ecological risk assessment in the topsoil of shiraz metropolis, south west of Iran[J]. Chemosphere, 2023, 335(52): 139060. |
| [27] | Shomar B, Rovira J. Human health risk assessment associated with the reuse of treated wastewater in arid areas[J]. Environmental Pollution, 2024, 345(38): 123478. |
| [28] | 杨扬. 农田土壤地膜源微塑料污染分布特征与释放机制研究[D]. 中国农业科学院, 2022. |
| [Yang Yang. Study on the Distribution Pattern and Kinetics of Microplastics Generation from Plastic Mulch Films in Agricultural Soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2022.] | |
| [115] |
Zhang Z, Guo J, Wang P. Occurrence, sources, and relationships of soil microplastics with adsorbed heavy metals in the Ebinur Lake Basin, Northwest China[J]. Journal of Arid Land, 2022, 14(8): 910-924.
doi: 10.1007/s40333-022-0025-9 |
| [116] | Brennecke D, Duarte B, Paiva F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine, Coastal and Shelf Science, 2016, 178(36): 189-195. |
| [29] | Xiong X, Zhang K, Chen X, et al. Sources and distribution of microplastics in China's largest inland lake-Qinghai Lake[J]. Environmental Pollution, 2018, 235(32): 899-906. |
| [30] | Kang Q, Zhang Y, Kang S, et al. Characteristics of soil microplastics and ecological risks in the Qilian Mountains region, Northeast Tibetan Plateau[J]. Environmental Pollution, 2024, 363(1):125016. |
| [31] | Kang Q, Zhang Y, Kang S, et al. Characteristics of soil microplastics and ecological risks in the Qilian Mountains region, Northeast Tibetan Plateau[J]. Environmental Pollution, 2024, 363(38): 125016. |
| [32] | Zhang Z, Li P, Hu W, et al. Electric forces can enhance the emission of microplastics into air[J]. Environmental Pollution, 2025, 376(39): 126405. |
| [33] | Huang Y, He T, Yan M, et al. Atmospheric transport and deposition of microplastics in a subtropical urban environment[J]. Journal of Hazardous Materials, 2021, 416(47): 126168. |
| [34] | Sun J, Peng Z, Zhu Z R, et al. The atmospheric microplastics deposition contributes to microplastic pollution in urban waters[J]. Water Research, 2022, 225(56): 119116. |
| [35] | Villafañe A B, Ronda A C, Rodríguez Pirani L S, et al. Microplastics and anthropogenic debris in rainwater from Bahia Blanca, Argentina[J]. Heliyon, 2023, 9(6): e17028. |
| [36] | 雷鹏, 李梦蛟, 刘亮亮, 等. 西北典型干旱区域棉田微塑料赋存特征及风险评估[J]. 环境污染与防治, 2025, 47(6): 10-19. |
| [Lei Peng, Li Mengjiao, Liu Liangliang, et al. Occurrence characteristic and risk assessment of microplastic from cotton fields in typical arid regions of Northwest China[J]. Environmental Pollution & Control, 2025, 47(6): 10-19.] | |
| [37] | Imbulana S, Tanaka S, Moriya A, et al. Inter-event and intra-event dynamics of microplastic emissions in an urban river during rainfall episodes[J]. Environmental Research, 2024, 243(58): 117882. |
| [38] | Han N, Zhao Q, Ao H, et al. Horizontal transport of macro-and microplastics on soil surface by rainfall induced surface runoff as affected by vegetations[J]. Science of the Total Environment, 2022, 831(51): 154989. |
| [39] |
Ohno H, Iizuka Y. Microplastics in snow from protected areas in Hokkaido, the northern island of Japan[J]. Scientific Reports, 2023, 13(1): 9942.
doi: 10.1038/s41598-023-37049-5 pmid: 37337041 |
| [40] | Hueso-Kortekaas K, Delgado-Mellado N, Calzada-Funes J, et al. Microplastics in Inland Saline Lakes of the Central Ebro Basin, NE Spain[J]. Water, 2025, 17(7): 989. |
| [41] | 王金花, 李冰, 侯宇晴, 等. 农田土壤中微塑料的赋存、迁移及生态效应研究进展[J]. 农业环境科学学报, 2023, 42(5): 951-965, 946. |
| [Wang Jinhua, Li Bing, Hou Yuqing, et al. Research process on the occurrence, migration, and ecological effects of microplastics in farmland soil[J]. Journal of Agro-Environment Science, 2023, 42(5): 951-965, 946.] | |
| [42] | Rødland E S, Lind O C, Reid M J, et al. Occurrence of tire and road wear particles in urban and peri-urban snowbanks, and their potential environmental implications[J]. Science of the Total Environment, 2022, 824(51): 153785. |
| [43] | Vijayan A, Österlund H, Magnusson K, et al. Microplastics (MPs) in urban roadside snowbanks: Quantities, size fractions and dynamics of release[J]. Science of the Total Environment, 2022, 851(51): 158306. |
| [44] | Zhao X, Qiang M, Yuan Y, et al. Distribution of microplastic contamination in the major tributaries of the Yellow River on the Loess Plateau[J]. Science of the Total Environment, 2023, 905(52): 167431. |
| [45] | Luo S, Wu H, Xu J, et al. Effects of lakeshore landcover types and environmental factors on microplastic distribution in lakes on the Inner Mongolia Plateau, China[J]. Journal of Hazardous Materials, 2024, 465(50): 133115. |
| [46] | Alirezazadeh M, Nematollahi M J, Keshavarzi B, et al. Microplastics in Abiotic Compartments of a Hypersaline Lacustrine Ecosystem[J]. Environmental Toxicology and Chemistry, 2023, 42(1): 19-32. |
| [47] | Wang Y, Liu L, Cao S, et al. Spatio-temporal variation of soil microplastics as emerging pollutant after long-term application of plastic mulching and organic compost in apple orchards[J]. Environmental Pollution, 2023, 328(37): 121571. |
| [48] | Liu H, Wang X, Shi Q, et al. Microplastics in arid soils: Impact of different cropping systems (Altay, Xinjiang)[J]. Environmental Pollution, 2022, 303(36): 119162. |
| [49] | Dehhaghi S, Pardakhti A. Characterization of microplastics in the atmosphere of megacity Tehran (Iran)[J]. Environmental Science and Pollution Research, 2023, 30(48): 106026-106037. |
| [50] | Mohamed E F, El-Mekawy A, Abdel-Latif N M. Airborne microplastic contamination and health risks in Greater Cairo, Egypt[J]. Environmental Science and Pollution Research, 2025, 32(12): 7705-7721. |
| [51] | 龚喜龙, 张道勇, 潘响亮. 黄河沉积物微塑料污染和表征[J]. 干旱区研究, 2020, 37(3): 790-798. |
| [Gong Xilong, Zhang Daoyong, Pan Xiangliang. Pollution and characterization of microplastics in the sediments of the Yellow River[J]. 2020, 37(3): 790-798.] | |
| [52] | Abbasi S, Rezaei M, Mina M, et al. Entrainment and horizontal atmospheric transport of microplastics from soil[J]. Chemosphere, 2023, 322(52): 138150. |
| [53] | En-Nejmy K, El Fels L, El Hayany B, et al. Microplastics behavior and distribution in mulched agricultural soil under semi-arid climate: A case study from Morocco[J]. Pedosphere, 2025, 5: S100020 16025000372. |
| [54] | El-Alfy M A, El-Hamid H T A, Keshta A E, et al. Assessing microplastic pollution vulnerability in a protected coastal lagoon in the Mediterranean Coast of Egypt using GIS modeling[J]. Scientific Reports, 2025, 15(1): 11557. |
| [55] | Liu Y, Wang K, Shi X, et al. Analysis of microplastic sources in Wuliangsuhai Lake, China: Implications to microplastic deposition in cold, arid region lakes[J]. Journal of Hazardous Materials, 2025, 492(51): 138135. |
| [56] | Liu Z, Liu X, Bai Y, et al. Spatiotemporal distribution and potential sources of atmospheric microplastic deposition in a semiarid urban environment of Northwest China[J]. Environmental Science and Pollution Research, 2023, 30(29): 74372-74385. |
| [57] | Wang J, Zhang X, Li X, et al. Exposure pathways, environmental processes and risks of micro (nano) plastics to crops and feasible control strategies in agricultural regions[J]. Journal of Hazardous Materials, 2023, 459(49): 132269. |
| [58] | Jaiswal P K, Vijayan V, Kumar S, et al. Seasonal distribution of microplastics and associated ecological risks in a semi-arid freshwater ecosystem in India[J]. Environmental Pollution, 2025, 376(39): 126430. |
| [59] | Liang X, Ye J, Cao R, et al. Microplastics and their interaction with microorganisms in Bosten Lake water[J]. Journal of Cleaner Production, 2024, 481(32): 144157. |
| [60] | Eppehimer D E, Hamdhani H, Hollien K D, et al. Impacts of baseflow and flooding on microplastic pollution in an effluent-dependent arid land river in the USA[J]. Environmental Science and Pollution Research, 2021, 28(33): 45375-45389. |
| [61] | Hurley R R, Lusher A L, Olsen M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices[J]. Environmental Science & Technology, 2018, 52(13): 7409-7417. |
| [62] | Yang M, Tian X, Guo Z, et al. Effect of dry soil aggregate size on microplastic distribution and its implications for microplastic emissions induced by wind erosion[J]. Environmental Science & Technology Letters, 2022, 9(7): 618-624. |
| [63] | Rezaei M, Riksen M J P M, Sirjani E, et al. Wind erosion as a driver for transport of light density microplastics[J]. Science of the Total Environment, 2019, 669(48): 273-281. |
| [64] | Chen Y, Leng Y, Liu X, et al. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China[J]. Environmental Pollution, 2020, 257(34): 113449. |
| [65] | Büks F, Kaupenjohann M. Global concentrations of microplastics in soils-a review[J]. Soil, 2020, 6(2): 649-662. |
| [66] | Li S, Li Z, Xue J, et al. Pollution and distribution of microplastics in grassland soils of Qinghai-Tibet Plateau, China[J]. Toxics, 2023, 11(1): 86. |
| [67] | Feng S, Lu H, Tian P, et al. Analysis of microplastics in a remote region of the Tibetan Plateau: Implications for natural environmental response to human activities[J]. Science of the Total Environment, 2020, 739(49): 140087. |
| [68] |
Brahney J, Hallerud M, Heim E, et al. Plastic rain in protected areas of the United States[J]. Science, 2020, 368(6496): 1257-1260.
doi: 10.1126/science.aaz5819 pmid: 32527833 |
| [69] | Tian X, Yang M, Guo Z, et al. Amount and characteristics of microplastic and organic matter in wind-blown sediment at different heights within the aeolian sand saltation layer[J]. Environmental Pollution, 2023, 327(37): 121615. |
| [70] | Zhang P, Wang J, Huang L, et al. Microplastic transport during desertification in drylands: Abundance and characterization of soil microplastics in the Amu Darya-Aral Sea basin, Central Asia[J]. Journal of Environmental Management, 2023, 348(51): 119353. |
| [71] | Wang J, Li J, Liu S, et al. Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands[J]. Environmental Pollution, 2021, 269(35): 116199. |
| [72] | Feng S, Lu H, Xue Y, et al. Driving factors and sources of microplastics in soils in the Yellow River source area[J]. Environmental Pollution, 2025, 369(15):125848. |
| [73] | Gan M, Zhang Y, Shi P, et al. Occurrence, potential sources, and ecological risk assessment of microplastics in the inland river basins in northern China[J]. Marine Pollution Bulletin, 2024, 205(55): 116656. |
| [74] | Wan S, Xu G, Xiong P, et al. Microplastic pollution characteristics and ecological risk assessment in the Wuding River Basin, China[J]. Environmental Pollution, 2024, 356(38): 124228. |
| [75] | Gan M, Zhang Y, Shi P, et al. Microplastic pollution in typical seasonal rivers in northern China: Temporal variation and risk assessment[J]. Environmental Science: Processes & Impacts, 2023, 25(9): 1479-1490. |
| [76] | Feng H, Xing X, Zhao F, et al. Insights into simultaneous changes of water evaporation and desiccation crack formation for microplastics-contained saline soils[J]. Geoderma, 2024, 448(58): 116977. |
| [77] | Shi J, Wang J, Lv J, et al. Microplastic additions alter soil organic matter stability and bacterial community under varying temperature in two contrasting soils[J]. Science of the Total Environment, 2022, 838(51): 156471. |
| [78] | Li L, Zhou Q, Yin N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin, 2019, 64(9): 928-934. |
| [79] | Li W, Wufuer R, Duo J, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region[J]. Science of the Total Environment, 2020, 749(49): 141420. |
| [80] | Eriksen M, Lusher A, Nixon M, et al. The plight of camels eating plastic waste[J]. Journal of Arid Environments, 2021, 185(44): 104374. |
| [81] |
Choi Y R, Kim Y N, Yoon J H, et al. Plastic contamination of forest, urban, and agricultural soils: A case study of Yeoju City in the Republic of Korea[J]. Journal of Soils and Sediments, 2021, 21(5): 1962-1973.
doi: 10.1007/s11368-020-02759-0 |
| [82] | Zhang J, Wang K, Hao T, et al. Long-term plastic film mulching promotes microplastic accumulation and alters gross nitrogen transformation in soil[J]. Applied Soil Ecology, 2025, 208(32): 106007. |
| [83] | Dong H, Li W, Tang W, et al. Furrow seeding with plastic mulching increases stand establishment and lint yield of cotton in a saline field[J]. Agronomy Journal, 2008, 100(6): 1640-1646. |
| [84] | Zhao Z Y, Wang P Y, Xiong X B, et al. Environmental risk of multi-year polythene film mulching and its green solution in arid irrigation region[J]. Journal of Hazardous Materials, 2022, 435(48): 128981. |
| [85] | Ebrahimi S, Doulgeris C, Karimpoor R. Variability in characteristics of water retention curve in polluted loessial soils by polyethylene microplastics[J]. Water, Air, & Soil Pollution, 2025, 236(4): 206. |
| [86] | Lin J, Chen B, Dong H, et al. Effects of soil moisture fluctuation and microplastics types on soil organic matter decomposition and carbon dynamics[J]. Soil Biology and Biochemistry, 2025, 205(57): 109781. |
| [1] | 鲁力, 郭建华, 王友年. 干旱区地下水埋深对土壤水盐运移影响的模拟与调控——以阿克苏河下游河岸带典型田块为例[J]. 干旱区研究, 2025, 42(7): 1196-1210. |
| [2] | 王艺璇, 邓晓红, 范慧文青, 韩江哲, 李宗省. 水资源承载力评价耦合模型的研究进展与干旱区应用[J]. 干旱区研究, 2025, 42(6): 1004-1020. |
| [3] | 张秀霞, 韩丽莎, 党星海, 汪孝贤, 林庆润, 邓灵芝, 杨明航, 张喜来. 西北干旱区近30 a植被覆盖的时空变化及其对气候因子的响应[J]. 干旱区研究, 2025, 42(6): 1067-1079. |
| [4] | 巩小维, 周冬梅, 张军, 罗世玉, 陈建坤, 高雅娟. “三生空间”视角下庆阳市景观生态风险评价及耦合协调度[J]. 干旱区研究, 2025, 42(3): 556-567. |
| [5] | 李琪, 党国锋, 鱼腾飞, 张浪, 陈薇宇. 基于GEE的干旱区县域生态环境质量时空变化及驱动力分析——以阿拉善左旗为例[J]. 干旱区研究, 2025, 42(2): 360-371. |
| [6] | 李双媛, 徐柱, 王玉刚, 孙金金. 干旱区自然资源地表基质细化分类体系构建与调查深度[J]. 干旱区研究, 2025, 42(1): 84-96. |
| [7] | 吕壮壮, 乔庆庆, 董孙艺, 汪冬. 中中新世气候适宜期全球变暖背景下亚洲内陆干旱区古气候演化特征及驱动机制[J]. 干旱区研究, 2024, 41(8): 1309-1322. |
| [8] | 王怡雯, 马瑶瑶, 史培军, 张钢锋. 干旱区光伏电站运营对局地生态环境的影响[J]. 干旱区研究, 2024, 41(8): 1423-1433. |
| [9] | 龙威夷, 施建飞, 李双媛, 孙金金, 王玉刚. 流域绿洲土壤盐分多模型反演效果评估[J]. 干旱区研究, 2024, 41(7): 1120-1130. |
| [10] | 高鹏程, 岳艳妮, 鄢继选, 王世杰, 别强. 甘南藏族自治州土地利用与生态风险时空演变及驱动因素[J]. 干旱区研究, 2024, 41(7): 1140-1152. |
| [11] | 杨荣钦, 肖玉磊, 池苗苗, 穆振侠. 近20 a塔里木河流域人类活动及景观生态风险时空变化[J]. 干旱区研究, 2024, 41(6): 1010-1020. |
| [12] | 李小等, 常亮, 段瑞, 王倩, 张群慧, 杨炳超. 和田河流域水化学特征与地下水补给来源分析[J]. 干旱区研究, 2024, 41(6): 917-927. |
| [13] | 叶虎, 裴浩, 姜艳丰, 那庆, 张立伟. 内蒙古半干旱区气溶胶散射特性及影响因素[J]. 干旱区研究, 2024, 41(5): 730-741. |
| [14] | 雷菲亚, 李小双, 陶冶, 尹本丰, 荣晓莹, 张静, 陆永兴, 郭星, 周晓兵, 张元明. 西北干旱区藓类结皮覆盖下土壤多功能性特征及影响因子[J]. 干旱区研究, 2024, 41(5): 812-820. |
| [15] | 司琪, 樊浩然, 董文明, 刘新平. 新疆叶尔羌河流域景观生态风险评价及预测[J]. 干旱区研究, 2024, 41(4): 684-696. |
|
||