干旱区研究 ›› 2025, Vol. 42 ›› Issue (8): 1525-1535.doi: 10.13866/j.azr.2025.08.15 cstr: 32277.14.AZR.20250815
李金辉1,2(
), 胡静1, 金红喜1,2, 王祺1,2, 姚泽1(
)
收稿日期:2025-01-22
修回日期:2025-05-30
出版日期:2025-08-15
发布日期:2025-11-24
通讯作者:
姚泽. E-mail: yaozeqq@163.com作者简介:李金辉(1986-),女,博士,主要从事植物营养生态研究. E-mail: ljhgsszsyjs@163.com
基金资助:
LI Jinhui1,2(
), HU Jing1, JIN Hongxi1,2, WANG Qi1,2, YAO Ze1(
)
Received:2025-01-22
Revised:2025-05-30
Published:2025-08-15
Online:2025-11-24
摘要: 通过探究不同生境条件对黑果枸杞(Lycium ruthenicum)种质差异的影响,有利于为其人工育种和种质创新提供重要的科学依据。本研究以不同种源黑果枸杞为研究对象,采用结构方程模型(Structural Equation Model,SEM)、主成分分析和线性回归等方法,探究空间、气候、土壤等因子对黑果枸杞果实中花青素积累的影响。结果表明:(1) 黑果枸杞果实中总花青素的积累量随海拔高度的增加而显著增加(P<0.01),海拔主要通过影响气候(β=-0.99,P<0.001),进而影响土壤全磷(β=-0.90,P<0.001),间接影响花青素的积累。(2) 野生黑果枸杞总花青素积累主要受气候因子影响,人工种植黑果枸杞总花青素积累主要受土壤全磷影响。(3) 影响黑果枸杞总花青素积累的主要气候因子是气温日较差(Diurnal Temperature Range,DTR)、最干季度平均温(Mean Temperature of Driest Quarter,MTDQ)、年降水量(Mean Annual Precipitation,MAP)和太阳辐射。研究表明影响不同种源黑果枸杞花青素积累的环境因子均有差异,在调控和提高花青素积累时,需根据相应的环境驱动因子制定改良措施。
李金辉, 胡静, 金红喜, 王祺, 姚泽. 环境因子对不同种源黑果枸杞花青素积累的影响[J]. 干旱区研究, 2025, 42(8): 1525-1535.
LI Jinhui, HU Jing, JIN Hongxi, WANG Qi, YAO Ze. Effects of environmental factors on anthocyanin accumulation in Lycium ruthenicum from various provenances[J]. Arid Zone Research, 2025, 42(8): 1525-1535.
表1
14个采样点的地理、气候信息"
| 采样点 | 经度(E) | 纬度(N) | 海拔/m | 气温日较差/℃ | 最干季度平均温/℃ | 年降水量/mm | 太阳辐射/(kJ·m-2·d-1) |
|---|---|---|---|---|---|---|---|
| 青海诺木洪-野生 | 96°11′ | 36°30′ | 2858 | 14.37 | -4.55 | 50 | 17047.00 |
| 青海诺木洪-人工 | 96°11′ | 36°23′ | 2806 | 14.64 | -4.57 | 45 | 17114.75 |
| 内蒙古额济纳旗-野生 | 101°10′ | 41°59′ | 919 | 13.97 | -8.78 | 43 | 16688.83 |
| 内蒙古额济纳旗-人工 | 105°32′ | 38°47′ | 1376 | 12.99 | -6.07 | 179 | 16585.92 |
| 新疆阿克苏-野生 | 79°10′ | 41°08′ | 1396 | 12.13 | -4.55 | 125 | 15676.67 |
| 新疆阿克苏-人工 | 80°56′ | 41°26′ | 1247 | 14.62 | -5.50 | 101 | 15720.17 |
| 甘肃民勤-野生 | 103°31′ | 38°46′ | 1345 | 14.17 | -6.17 | 117 | 16367.75 |
| 甘肃民勤-野生 | 102°57′ | 38°50′ | 1326 | 14.70 | -6.28 | 113 | 16501.42 |
| 甘肃民勤-野生 | 103°36′ | 39°03′ | 1306 | 14.88 | -6.37 | 110 | 16563.92 |
| 甘肃民勤-人工 | 102°58′ | 38°35′ | 1363 | 14.66 | -6.22 | 125 | 16428.17 |
| 甘肃酒泉-野生 | 98°27′ | 39°56′ | 1481 | 13.82 | -5.52 | 95 | 16687.00 |
| 甘肃酒泉-人工 | 98°53′ | 39°55′ | 1295 | 14.07 | -7.12 | 93 | 16971.42 |
| 甘肃张掖-野生 | 100°25′ | 39°01′ | 1483 | 14.05 | -6.38 | 188 | 16748.00 |
| 甘肃张掖-人工 | 99°35′ | 38°49′ | 2304 | 14.09 | -8.65 | 355 | 16503.75 |
| [1] |
Pascual-Teresa S D, Moreno D A, García-Viguera C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence[J]. International Journal of Molecular Sciences, 2010, 11(4): 1679-1703.
doi: 10.3390/ijms11041679 pmid: 20480037 |
| [2] |
Lin B W, Gong C C, Song H F, et al. Effects of anthocyanins on the prevention and treatment of cancer[J]. British Journal of Pharmacology, 2017, 174(11): 1226-1243.
doi: 10.1111/bph.v174.11 |
| [3] |
Castell-Auví A, Cedó L, Pallarès V, et al. Procyanidins modify insulinemia by affecting insulin production and degradation[J]. The Journal of Nutritional Biochemistry, 2012, 23(12): 1565-1572.
doi: 10.1016/j.jnutbio.2011.10.010 |
| [4] |
Alvaren-Suarez J M, Giampieri F, Tulipani S, et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans[J]. The Journal of Nutritional Biochemistry, 2014, 25(3): 289-294.
doi: 10.1016/j.jnutbio.2013.11.002 |
| [5] | Maier A, Hoecker U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions[J]. Plant Signaling & Behavior, 2015, 10(1): e970440. |
| [6] |
Spinardi A, Cola G, Gardana C S, et al. Variation of anthocyanin content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes[J]. Frontiers in Plant Science, 2019, 10: 01045.
doi: 10.3389/fpls.2019.01045 |
| [7] |
魏永赞, 胡福初, 郑雪文, 等. 光照对荔枝果实着色和花色素苷生物合成影响的分子机制研究[J]. 园艺学报, 2017, 44(7): 1363-1370.
doi: 10.16420/j.issn.0513-353x.2016-0717 |
|
[Wei Yongzan, Hu Fuchu, Zheng Xuewen, et al. The molecular mechanism of the impacts of illumination on litchi fruit coloration and anthocyanin biosynthesis[J]. Acta Horticulturae Sinica, 2017, 44(7): 1363-1370.]
doi: 10.16420/j.issn.0513-353x.2016-0717 |
|
| [8] |
Hu W G, Ran J Z, Dong L W, et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships[J]. Nature Communications, 2021, 12: 5350.
doi: 10.1038/s41467-021-25641-0 pmid: 34504089 |
| [9] |
Li J H, Zhao D M, Akram M A, et al. Effects of environmental factors on anthocyanin accumulation in the fruits of Lycium ruthenicum Murray across different desert grasslands[J]. Journal of Plant Physiology, 2022, 279: 153828.
doi: 10.1016/j.jplph.2022.153828 |
| [10] |
Matsui K, Umemura Y, Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis[J]. The Plant Journal, 2008, 55(6): 954-967.
doi: 10.1111/j.1365-313X.2008.03565.x pmid: 18532977 |
| [11] |
Wang L, Yang S L, Ni J B, et al. Advances of anthocyanin synthesis regulated by plant growth regulators in fruit trees[J]. Scientia Horticulturae, 2023, 307: 111476.
doi: 10.1016/j.scienta.2022.111476 |
| [12] |
Zheng J, Li H, Ding C X, et al. Anthocyanins composition and antioxidant activity of two major wild Nitraria tangutorun Bobr. variations from Qinghai-Tibet Plateau[J]. Food Research International, 2011, 44(7): 2041-2046.
doi: 10.1016/j.foodres.2010.07.008 |
| [13] |
董鹏, 任悦, 高广磊, 等. 呼伦贝尔沙地樟子松枯落物和土壤碳, 氮, 磷化学计量特征[J]. 干旱区研究, 2024, 41(8): 1354-1363.
doi: 10.13866/j.azr.2024.08.09 |
| [Dong Peng, Ren Yue, Gao Guanglei, et al. Stoichiometry of carbon, nitrogen, and phosphorus in the litter and soil of Pinus sylvestris var. mongolica in the Hulunbuir Sandy Land[J]. Arid Zone Research, 2024, 41(8): 1354-1363.] | |
| [14] |
Fanzone M, Peña-Neira A, Jofré V, et al. Phenolic characterization of Malbec wines from Mendoza Province (Argentina)[J]. Journal of Agricultural and Food Chemistry, 2010, 58(4): 2388-2397.
doi: 10.1021/jf903690v pmid: 20055443 |
| [15] |
Jiménez-Espejo F J, García-Alix A, Jiménez-Moreno G, et al. Saharan aeolian input and effective humidity variations over western Europe during the Holocene from a high altitude record[J]. Chemical Geology, 2014, 374-375: 1-12.
doi: 10.1016/j.chemgeo.2014.03.001 |
| [16] |
Berli F J, Alonso R, Beltrano J, et al. High-altitude solar UV-B and abscisic acid sprays increase grape berry antioxidant capacity[J]. American Journal of Enology and Viticulture, 2014, 66(1): 65-72.
doi: 10.5344/ajev.2014.14067 |
| [17] | Xing R R, He F, Xiao H L, et al. Accumulation pattern of flavonoids in Cabernet Sauvignon grapes grown in a low-latitude and high-altitude region[J]. South African Journal of Enology and Viticulture, 2014, 36(1): 32-43. |
| [18] | 蒋宝, 蒲飞, 孙占育, 等. 海拔对酿酒葡萄果实和相应葡萄酒中多酚物质影响的研究概述[J]. 食品与发酵工业, 2016, 42(8): 262-267. |
| [Jiang Bao, Pu Fei, Sun Zhanyu, et al. Research progress on influence of cultivation altitude on phenolics of grape berry and wine[J]. Food and Fermentation Industries, 2016, 42(8): 262-267.] | |
| [19] | 矫晓丽, 迟晓峰, 董琦, 等. 柴达木野生黑果枸杞营养成分分析[J]. 氨基酸和生物资源, 2011, 33(3): 60-62. |
| [Jiao Xiaoli, Chi Xiaofeng, Dong Qi, et al. Analysis of the nutritional components of Lycium ruthenicum[J]. Amino Acids & Biotic Resources, 2011, 33(3): 60-62.] | |
| [20] |
彭飞, 黄翠华, 尤全刚, 等. 种植黑果枸杞(Lycium ruthenicum)对盐渍土盐分分布的影响[J]. 中国沙漠, 2013, 33(5): 1406-1412.
doi: 10.7522/j.issn.1000-694X.2013.00206 |
| [Peng Fei, Huang Cuihua, You Quangang, et al. Effects of plantation of Lycium ruthenicum on the soil salt distribution in the Minqin Basin[J]. Journal of Desert Research, 2013, 33(5): 1406-1412.] | |
| [21] |
Nguyen K H, Ha C V, Nishiyama R, et al. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought[J]. PNAS, 2016, 113(11): 3090-3095.
doi: 10.1073/pnas.1600399113 pmid: 26884175 |
| [22] |
Wang J F, Lian W R, Cao Y Y, et al. Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis[J]. Scientific Reports, 2018, 8: 13349.
doi: 10.1038/s41598-018-31690-1 |
| [23] | 刘克彪, 郭春秀, 张元恺, 等. 不同种源黑果枸杞物候期和生长差异及其与地理-气候因子的相关性分析[J]. 植物资源与环境学报, 2019, 28(4): 41-48. |
| [Liu Kebiao, Guo Chunxiu, Zhang Yuankai, et al. Phenophase and growth differences of Lycium ruthenicum from different provenances and their correlation analysis with geographical-climatic factors[J]. Journal of Plant Resources and Environment, 2019, 28(4): 41-48.] | |
| [24] |
Matsushita K, Sakayori T, Ikeda T. The effect of high air temperature on anthocyanin concentration and the expressions of its biosynthetic genes in strawberry ‘Sachinoka’[J]. Environmental Control in Biology, 2016, 54(2): 101-107.
doi: 10.2525/ecb.54.101 |
| [25] |
Kim S, Hwang G, Lee S, et al. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5[J]. Frontiers in Plant Science, 2017, 8: 01787.
doi: 10.3389/fpls.2017.01787 |
| [26] |
Zhang Y Q, Zheng S, Liu Z J, et al. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings[J]. Journal of Plant Physiology, 2011, 168(4): 367-374.
doi: 10.1016/j.jplph.2010.07.025 |
| [27] |
Chorti E, Guidoni S, Ferrandino A, et al. Effect of different cluster sunlight exposure levels on ripening and anthocyanin accumulation in Nebbiolo grapes[J]. American Journal of Enology and Viticulture, 2010, 61(1): 23-30.
doi: 10.5344/ajev.2010.61.1.23 |
| [28] | Sullivan C N, Koski M H. The effects of climate change on floral anthocyanin polymorphisms[J]. Proceedings of the Royalsociety B: Biological Sciences, 2021, 288(1946): 20202693. |
| [29] |
Castellarin S D, Matthews M A, Gaspero G D, et al. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries[J]. Planta, 2007, 227(1): 101-112.
doi: 10.1007/s00425-007-0598-8 pmid: 17694320 |
| [30] |
李金霞, 朱亚男, 孙小妹, 等. 氮磷添加对黑果枸杞(Lycium ruthenicum)营养器官非结构性碳水化合物特征的影响[J]. 中国沙漠, 2021, 41(2): 200-211.
doi: 10.7522/j.issn.1000-694X.2020.00119 |
|
[Li Jinxia, Zhu Yanan, Sun Xiaomei, et al. Effects of nitrogen and phosphorus addition on non-structural carbohydrate properties of vegetative organs in Lycium ruthenicum[J]. Journal of Desert Research, 2021, 41(2): 200-211.]
doi: 10.7522/j.issn.1000-694X.2020.00119 |
|
| [31] |
Dietze M C, Sala A, Carbone M S, et al. Nonstructural carbon in woody plants[J]. Annual Review of Plant Biology, 2014, 65: 667-687.
doi: 10.1146/annurev-arplant-050213-040054 pmid: 24274032 |
| [32] |
Ma B, Zhang Y, Fan Y F, et al. Genetic improvement of phosphate-limited photosynthesis for high yield in rice[J]. PNAS, 2024, 121(34): e2404199121.
doi: 10.1073/pnas.2404199121 |
| [33] |
Li H Q, He K R, Zhang Z Q, et al. Molecular mechanism of phosphorous signaling inducing anthocyanin accumulation in Arabidopsis[J]. Plant Physiology and Biochemistry, 2023, 196: 121-129.
doi: 10.1016/j.plaphy.2023.01.029 |
| [34] |
Jindo K, Audette Y, Olivares F L, et al. Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: A review[J]. Chemical and Biological Technologies in Agriculture, 2023, 10: 29.
doi: 10.1186/s40538-023-00401-y pmid: 37026154 |
| [35] |
Ruiz A, Sanhueza M, Gómez F, et al. Changes in the content of anthocyanins, flavonols, and antioxidant activity in Fragaria ananassa var. Camarosa fruits under traditional and organic fertilization[J]. Journal of the Science of Food and Agriculture, 2019, 99(5): 2404-2410.
doi: 10.1002/jsfa.2019.99.issue-5 |
| [36] |
热依拉穆·麦麦提吐尔逊, 哈里布努尔, 艾沙江·阿不都沙拉木. 异质生境下黑果枸杞异形果实的种子休眠及萌发特性[J]. 干旱区研究, 2023, 40(7): 1152-1163.
doi: 10.13866/j.azr.2023.07.12 |
| [Reyilamu Maimaituerxun, Halibunuer, Aysajan Abdusalam. Seed germination and dormancy traits of fruit heteromorphism species Lycium ruthenicum in an elevational heterogeneity environment[J]. Arid Zone Research, 2023, 40(7): 1152-1163.] | |
| [37] |
Witzgall K, Vidal A, Schubert D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon[J]. Nature Communications, 2021, 12: 4115.
doi: 10.1038/s41467-021-24192-8 pmid: 34226560 |
| [38] |
Busse-Valverde N, Gómez-Plaza E, López-Poca J M, et al. The extraction of anthocyanins and proanthocyanidins from grapes to wine during fermentative maceration is affected by the enological technique[J]. Journal of Agricultural and Food Chemistry, 2011, 59(10): 5450-5455.
doi: 10.1021/jf2002188 pmid: 21462997 |
| [39] | 何彩, 戴建昊, 刘伟, 等. 荒漠区黑果枸杞造林及人工栽培种源筛选[J]. 经济林研究, 2021, 39(2): 90-96. |
| [He Cai, Dai Jianhao, Liu Wei, et al. Provenance selection of Lycium ruthenicum for afforestation and artificial cultivation in desert area[J]. Non-wood Forest Research, 2021, 39(2): 90-96.] | |
| [40] |
Martínez-Lüscher J, Sánchez-Díaz M, Delrot S, et al. Ultraviolet-B alleviates the uncoupling effect of elevated CO2 and increased temperature on grape berry (Vitis vinifera cv. Tempranillo) anthocyanin and sugar accumulation[J]. Australian Journal of Grape and Wine Research, 2016, 22(1): 87-95.
doi: 10.1111/ajgw.12213 |
| [41] |
Ma Y Y, Ma X, Gao X, et al. Light induced regulation pathway of anthocyanin biosynthesis in plants[J]. International Journal of Molecular Sciences, 2021, 22(20): 11116.
doi: 10.3390/ijms222011116 |
| [42] | 李发奎, 李金霞, 孙小妹, 等. 黑果枸杞茎叶生长及其生态化学计量特征对灌水施肥的响应[J]. 干旱区研究, 2020, 37(2): 452-461. |
| [Li Fakui, Li Jinxia, Sun Xiaomei, et al. Effects of irrigation and fertilization on the stem and leaf growth and ecostoichiometric characteristics of Lycium ruthenicum Murr.[J]. Arid Zone Research, 2020, 37(2): 452-461.] | |
| [43] |
Allen G A, Marr K L, McCormick L J, et al. Geographical origins, migration patterns and refugia of Sibbaldia procumbens, an arctic-alpine plant with a fragmented range[J]. Journal of Biogeography, 2015, 42(9): 1665-1676.
doi: 10.1111/jbi.2015.42.issue-9 |
| [44] |
Moeller D A, Geber M A, Tiffin P. Population genetics and the evolution of geographic range limits in an annual plant[J]. The American Naturalist, 2011, 178(S1): 44-61.
doi: 10.1086/660282 |
| [45] | Shukla V, Kumar S, Kumar N. Plant Adaptation Strategies in Changing Environment[M]. Singapore: Springer Nature, 2017. |
| [1] | 徐文韬, 杜永军, 张衡, 田浩, 柴文光, 李小龙, 贾伟康, 杨广. 干旱内陆河流域典型荒漠生态系统水热通量变化特征及影响因素[J]. 干旱区研究, 2025, 42(9): 1574-1586. |
| [2] | 袁子喧, 辛智鸣, 程一本, 于涛, 刘昱萱. 乌兰布和沙漠地区多枝柽柳蒸腾耗水特征及其与环境因子的关系[J]. 干旱区研究, 2025, 42(8): 1426-1436. |
| [3] | 施秀娟, 李伟伟, 赵锐明. 野生与栽培黑果枸杞根际土壤养分和微生物多样性差异[J]. 干旱区研究, 2025, 42(8): 1463-1472. |
| [4] | 王广权, 木古丽·木哈西, 吾尔恩·阿合别尔迪, 玛依拉·吐尔地别克, 张雪梅, 庞克坚. 新疆伊犁野生阿魏菇根际土壤环境因子与细菌群落组成特征[J]. 干旱区研究, 2025, 42(5): 875-884. |
| [5] | 杨英, 李沁, 王源, 杨贵军, 田进花, 李雄, 张大治. 宁夏太阳山风电场鸟类群落多样性及其影响因素[J]. 干旱区研究, 2025, 42(10): 1899-1912. |
| [6] | 陈松清, 东红芳, 岳怡锋, 郝媛媛, 刘新, 曹先宇, 马骏. 不同气候情景下中国沙棘的地理分布及动态变化预测[J]. 干旱区研究, 2024, 41(9): 1560-1571. |
| [7] | 赵立超, 张成福, 贺帅, 苗林, 冯霜, 潘思涵. 复杂山区地表温度模拟及影响——以内蒙古大青山为例[J]. 干旱区研究, 2024, 41(5): 765-775. |
| [8] | 安宁, 郭彬, 张东梅, 杨淇越, 罗维成. 河西走廊中段荒漠植被组成及土壤养分空间分布特征[J]. 干旱区研究, 2024, 41(3): 432-443. |
| [9] | 柴巧弟, 马瑞, 王安林, 张富, 刘腾, 田永胜. 河西走廊阻沙固沙带典型荒漠植物叶功能性状[J]. 干旱区研究, 2024, 41(11): 1898-1907. |
| [10] | 李健男, 史海滨, 苗庆丰, 珊丹, 荣浩, 温雅琴. 环境因子对不同种类人工乔木林分蒸腾耗水的影响[J]. 干旱区研究, 2023, 40(8): 1312-1321. |
| [11] | 李娟, 刘阳, 刘光琇, 程亮, 郭青云, 张威, 章高森. 鄯善库木塔格沙漠北缘细菌群落结构特征及影响因素[J]. 干旱区研究, 2023, 40(8): 1358-1368. |
| [12] | 热依拉穆·麦麦提吐尔逊, 哈里布努尔, 艾沙江·阿不都沙拉木. 异质生境下黑果枸杞异形果实的种子休眠及萌发特性[J]. 干旱区研究, 2023, 40(7): 1152-1163. |
| [13] | 李瑞, 单立山, 解婷婷, 马丽, 杨洁, 李全刚. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435. |
| [14] | 王冠正, 常顺利, 王建萍, 张毓涛, 孙雪娇, 李翔. 不同坡向雪岭云杉天然更新影响因素分析[J]. 干旱区研究, 2023, 40(10): 1661-1669. |
| [15] | 闫景明,周晓兵,张静,陶冶. 新疆野苹果枝条化学计量海拔变异特征研究[J]. 干旱区研究, 2021, 38(2): 450-459. |
|
||