干旱区研究 ›› 2025, Vol. 42 ›› Issue (8): 1463-1472.doi: 10.13866/j.azr.2025.08.10 cstr: 32277.14.AZR.20250810
收稿日期:2025-04-17
修回日期:2025-06-27
出版日期:2025-08-15
发布日期:2025-11-24
通讯作者:
赵锐明. E-mail: zhaorm1001@163.com作者简介:施秀娟(2001-),女,硕士研究生,主要从事药用植物研究. E-mail: 17693207306@163.com
基金资助:
SHI Xiujuan(
), LI Weiwei, ZHAO Ruiming(
)
Received:2025-04-17
Revised:2025-06-27
Published:2025-08-15
Online:2025-11-24
摘要: 为解析野生与栽培两种不同生境黑果枸杞(Lycium ruthenicum)植株根际土壤理化性质及微生物多样性的差异,提供优化栽培策略理论依据。以青海省诺木洪地区野生和栽培黑果枸杞的根际土壤为研究对象,结合高通量测序技术与土壤理化性质分析,比较两者全氮(Total Nitrogen,TN)、全磷(Total Phosphorus,TP)、全钾(Total Potassium,TK)等全量养分和有机碳(Soil Organic Carbon,SOC)含量,了解微生物群落组成特征和功能,并通过冗余分析揭示微生物-土壤因子的关联。结果显示:(1) 野生黑果枸杞植株根际土壤中TK(P<0.001)和SOC(P<0.05)含量显著高于栽培植株,但pH值较栽培植株显著降低0.74(P<0.05)。(2) 微生物群落组成分析表明,野生黑果枸杞植株根际土壤中放线菌门(Actinobacteriota)、绿弯菌门(Chloroflexi)及子囊菌门(Ascomycota)相对丰度高于栽培植株,而栽培植株中变形菌门(Proteobacteria)、酸杆菌门(Acidobacteriota)、被孢霉门(Mortierellomycota)与壶菌门(Chytridiomycota)相对丰度高于野生植株。(3) 冗余分析显示,野生黑果枸杞植株根际土壤微生物群落的α多样性与TN、TP、TK、SOC呈正相关,与pH值呈负相关,栽培植株呈相反趋势。(4) 功能预测表明,野生黑果枸杞植株根际土壤中腐生营养型真菌功能丰度较高,而栽培植株中植物病原体功能丰度较高。研究结果可为黑果枸杞规模化种植及退化生境生态修复提供科学依据。
施秀娟, 李伟伟, 赵锐明. 野生与栽培黑果枸杞根际土壤养分和微生物多样性差异[J]. 干旱区研究, 2025, 42(8): 1463-1472.
SHI Xiujuan, LI Weiwei, ZHAO Ruiming. Differences in the nutrient and microbial diversity of rhizosphere soil between wild and cultivated Lycium ruthenicum[J]. Arid Zone Research, 2025, 42(8): 1463-1472.
| [1] | 张亮, 魏彦强, 王金牛, 等. 气候变化情景下黑果枸杞的潜在地理分布[J]. 应用与环境生物学报, 2020, 26(4): 969-978. |
| [Zhang Liang, Wei Yanqiang, Wang Jinniu, et al. The potential geographical distribution of Lycium ruthenicum Murr. under different climate change scenarios[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(4): 969-978.] | |
| [2] | 胡翠娟. 野生药用植物人工栽培品种选择技术[J]. 黑龙江科技信息, 2014(22): 80. |
| [Hu Cuijuan. Selection technology of wild medicinal plants cultivated varieties[J]. Heilongjiang Science and Technology Information, 2014(22): 80.] | |
| [3] | 宋燕芳, 彭彤, 马少兰, 等. 枸杞叶片酚酸类物质的自毒作用分析[J]. 江苏农业学报, 2024, 40(2): 213-222. |
| [Song Yanfang, Peng Tong, Ma Shaolan, et al. Analyzing the autotoxicity of phenolic acids from Lycium barbarum L. leaves[J]. Jiangsu Journal of Agricultural Sciences, 2024, 40(2): 213-222.] | |
| [4] |
Zhao Y M, Cheng Y X, Ma Y N, et al. Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease[J]. Molecules, 2018, 23(4): 819.
doi: 10.3390/molecules23040819 |
| [5] | Ding M, Dai H, He Y, et al. Continuous cropping system altered soil microbial communities and nutrient cycles[J]. Front Microbiol, 2024, 15: e1374550. |
| [6] | 阳雅荧, 毛洁莹, 陈保冬, 等. 土著AM真菌接种对古银杏实生苗生长和生理特性的影响[J]. 生态学报, 2025, 45(3): 1429-1443. |
| [Yang Yaying, Mao Jieying, Chen Baodong, et al. Effect of inoculation with indigenous AM fungi on growth and physiological characteristics of ancient Ginkgo biloba seedlings in Shanghai[J]. Acta Ecologica Sinica, 2025, 45(3): 1429-1443.] | |
| [7] |
Xu W, Whitman W B, Gundale M J, et al. Functional response of the soil microbial community to biochar applications[J]. Global Change Biology Bioenergy, 2021, 13(1): 269-281.
doi: 10.1111/gcbb.v13.1 |
| [8] | Hu J, Hu X, Zhang H, et al. Moderate NaCl alleviates osmotic stress in Lycium ruthenicum[J]. Plant Growth Regulation, 2022, 97(3): 581-591. |
| [9] |
Zeng H T, Zheng T, Peng X, et al. Transcriptomic and targeted metabolomics analysis of detached Lycium ruthenicum leaves reveals mechanisms of anthocyanin biosynthesis induction through light quality and sucrose treatments[J]. Metabolites, 2023, 13(9): 1004.
doi: 10.3390/metabo13091004 |
| [10] |
Naylor D, DeGraaf S, Purdom E, et al. Drought and host selection influence bacterial community dynamics in the grass root microbiome[J]. The ISME journal, 2017, 11(12): 2691-2704.
doi: 10.1038/ismej.2017.118 |
| [11] | 张瑞福. 根际微生物: 农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2. |
| [Zhang Ruifu. Rhizosphere microorganisms: A promising plant second genome in the green development of agriculture[J]. Biotechnology Bulletin, 2020, 36(9): 1-2.] | |
| [12] |
Noman M, Ahmed T, Ijaz U, et al. Plant-microbiome crosstalk: Dawning from composition and assembly of microbial community to improvement of disease resilience in plants[J]. International Journal of Molecular Sciences, 2021, 22(13): 6852.
doi: 10.3390/ijms22136852 |
| [13] |
Ebrahimi-Zarandi M, Etesami H, Glick B R. Fostering plant resilience to drought with actinobacteria: Unveiling perennial allies in drought stress tolerance[J]. Plant Stress, 2023, 10: 100242.
doi: 10.1016/j.stress.2023.100242 |
| [14] |
Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6(1): 156.
doi: 10.1186/s40168-018-0537-x pmid: 30208962 |
| [15] |
Laurent P, M Jos R, Philippe L, et al. Going back to the roots: The microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11): 789-799.
doi: 10.1038/nrmicro3109 pmid: 24056930 |
| [16] | 徐宜峰. 高寒草甸灌木长期移除和模拟增温对土壤细菌拮抗作用与群落结构的影响机制研究[D]. 兰州: 兰州大学, 2022. |
| [Xu Yifeng. The Mechanism of Long-term Shrub Removal and Simulated Warming Effects on Soil Bacterial Antagonism and Community Structure in Alpine Meadow[D]. Lanzhou: Lanzhou University, 2022.] | |
| [17] | 李浩然, 林伟, 王天一, 等. 人参化感作用研究进展[J/OL]. 分子植物育种, [2025-03-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20240715.1254.002.html. |
| [Li Haoran, Lin Wei, Wang Tianyi, et al. Research progress on allelopathic effects of Ginseng[J/OL]. Molecular Plant Breeding, [2025-03-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20240715.1254.002.html.. | |
| [18] |
Chen H N, Wang F, Gao Y M, et al. Integrating cover crops and manure to boost goji berry yield: Responses of soil physicochemical properties and microbial communities[J]. Microorganisms, 2025, 13(3): 696.
doi: 10.3390/microorganisms13030696 |
| [19] | 韩进军. 气候变化背景下柴达木盆地荒漠化时空演变及驱动力研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 2023. |
| [Han Jinjun. Study on Spatiotemporal Evolution and Driving Forces of Desertification in Qaidam Basin Under the Background of Climate Change[D]. Xining: University of Chinese Academy of Sciences (Qinghai Institute of Salt Lakes, Chinese Academy of Sciences), 2023.] | |
| [20] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. |
| [Bao Shidan. Soil Agrochemica Analysis[M]. Beijing: China Agriculture Press, 2000.] | |
| [21] | 萨仁格尔力. 浅谈柴达木黑果枸杞种植技术及经济价值[J]. 柴达木开发研究, 2020(6): 27-31. |
| [Sarengelli. Discussion on the planting technology and economic value of Qaidam black wolfberry[J]. Chaidamu Development Research, 2020(6): 27-31.] | |
| [22] | 高明霞, 孙瑞, 崔全红, 等. 长期施用化肥对塿土微生物多样性的影响[J]. 植物营养与肥料学报, 2015, 21(6): 1572-1580. |
| [Gao Mingxia, Sun Rui, Cui Quanhong, et al. Effect of long-term chemical fertilizer application on soil microbial diversity in anthropogenic loess soil[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1572-1580.] | |
| [23] | 白生堆. 榆阳区黑果枸杞人工栽培管理技术[J]. 陕西林业科技, 2019, 47(5): 112-114, 117. |
| [Bai Shengdui. Artificial cultivation and management of Lycium ruthenicum in Yuyang District[J]. Shaanxi Forest Science and Technology, 2019, 47(5): 112-114, 117.] | |
| [24] | York A. Aboveground-belowground linkages: Biotic interactions, ecosystem processes, and global change[J]. Austral Ecology, 2012, 37(8): 26-27. |
| [25] | 许文鼎, 吴云莺, 梁君, 等. 柴达木盆地南缘诺木洪地区水化学特征及分布规律[J]. 河北省科学院学报, 2009, 26(2): 63-66. |
| [Xu Wending, Wu Yunying, Liang Jun, et al. The water chemical characteristics and distribution pattern of Nuomuhong District in the southern margin of Qaidam Basin[J]. Journal of Hebei Academy of Sciences, 2009, 26(2): 63-66.] | |
| [26] | 李小等. 青海省诺木洪地区地下水化学特征及演化规律[D]. 西安: 长安大学, 2012. |
| [Li Xiaodeng. Study on the Groundwater Chemistry Evolution of Nuomuhong Area in Qinghai Province[D]. Xi’an: Chang’an University, 2012.] | |
| [27] | 严小功, 张金旭, 杨占云, 等. 柴达木盆地盐碱地现状及改良措施[J]. 农业与技术, 2020, 40(7): 18-20. |
| [Yan Xiaogong, Zhang Jinxu, Yang Zhanyun, et al. Status and improvement measures of saline-alkali land in Qaidam Basin[J]. Agriculture and Technology, 2020, 40(7): 18-20.] | |
| [28] |
Liu C, Gong X, Dang K, et al. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management[J]. Environmental Research, 2020, 184: 109261.
doi: 10.1016/j.envres.2020.109261 |
| [29] |
Trivedi P, Delgado-Baquerizo M, Trivedi C, et al. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems[J]. Soil Biology and Biochemistry, 2017, 111: 10-14.
doi: 10.1016/j.soilbio.2017.03.013 |
| [30] |
Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences, 2006, 103(3): 626-631.
doi: 10.1073/pnas.0507535103 |
| [31] |
顾美英, 唐光木, 冯雷, 等. 南疆野生黑果枸杞果实抗氧化成分与土壤理化性质、微生物特征的相关性[J]. 新疆农业科学, 2017, 54(10): 1930-1940.
doi: 10.6048/j.issn.1001-4330.2017.10.019 |
|
[Gu Meiying, Tang Guangmu, Feng Lei, et al. Relativity study on antioxidant composition of wild Lycium ruthenicum Murr. and soil physico-chemical properties and microbial characteristics in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2017, 54(10): 1930-1940.]
doi: 10.6048/j.issn.1001-4330.2017.10.019 |
|
| [32] | 陈军豪, 杨生茂, 汪玉瑛, 等. 盐胁迫下生物炭添加对紫苏生长及根际微生物群落的影响[J]. 农业环境科学学报, 2024, 43(12): 2947-2958. |
| [Chen Junhao, Yang Shengmao, Wang Yuying, et al. Effects of biochar addition on perilla growth and the rhizosphere microbial community under salt stress[J]. Journal of Agro-Environment Science, 2024, 43(12): 2947-2958.] | |
| [33] | 吴阳. 高盐胁迫对土壤碳氮磷代谢的影响及其微生物学机制[D]. 杨陵: 西北农林科技大学, 2023. |
| [Wu Yang. Effects of High Salt Stress on Soil Carbon, Nitrogen, and Phosphorus Metabolism and its Microbiological Mechanisms[D]. Yangling: Northwest A & F University, 2023.] | |
| [34] |
Francioli D, Rijssel V Q S, Ruijven V J, et al. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment[J]. Plant and Soil, 2021, 461(1/2): 91-105.
doi: 10.1007/s11104-020-04454-y |
| [35] |
张玲豫, 齐雅柯, 焦健, 等. 河西走廊沙地芦苇(Phragmites australis)根际土壤微生物群落多样性[J]. 中国沙漠, 2021, 41(6): 1-9.
doi: 10.7522/j.issn.1000-694X.2021.00071 |
|
[Zhang Lingyu, Qi Yake, Jiao Jian, et al. Microbial community diversity of reed rhizosphere soil in different sandy land habitats of Hexi Corridor, Gansu, China[J]. Journal of Desert Research, 2021, 41(6): 1-9.]
doi: 10.7522/j.issn.1000-694X.2021.00071 |
|
| [36] |
Zin Nur A, Noor A B. Biological functions of Trichoderma spp. for agriculture applications[J]. Annals of Agricultural Sciences, 2020, 65(2): 168-178.
doi: 10.1016/j.aoas.2020.09.003 |
| [37] |
Qiu L, Zhang Q, Zhu H, et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME journal, 2021, 15(8): 2474-2489.
doi: 10.1038/s41396-021-00913-1 |
| [38] | 卢圣鄂, 肖波, 任风鸣, 等. 基于Illumina Miseq分析黄精根腐病根际土壤真菌群落结构及多样性[J]. 世界科学技术-中医药现代化, 2021, 23(1): 13-19. |
| [Lu Sheng’e, Xiao Bo, Ren Fengming, et al. Fungal community structure and diversity of rhizosphere soil of Polygonatum Sibiricum with root-rot analyzed by Illumina Miseq high-throughput sequencing technology[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2021, 23(1): 13-19.] | |
| [39] |
贾晨波, 郭洋, 马成莲, 等. 宁杞 1 号枸杞健康株与根腐病患病株的土壤微生物群落和功能差异[J]. 生态环境学报, 2021, 30(9): 1831-1840.
doi: 10.16258/j.cnki.1674-5906.2021.09.007 |
| [Jia Chenbo, Guo Yang, Ma Chenglian, et al. Difference on soil microbial community and function of healthy and diseased plants of Lycium barbarum Ningqi-1[J]. Ecology and Environmental Sciences, 2021, 30(9): 1831-1840.] | |
| [40] |
Han L, Zhou X, Zhao Y T, et al. First report of Plectosphaerella plurivora causing root rot disease in Panax notoginseng in China[J]. Journal of Phytopathology, 2020, 168(7-8): 375-379.
doi: 10.1111/jph.12901 |
| [1] | 朱朝华, 翟祎笑, 李欣荣, 缪潆祥, 马彤, 李善家. 梭梭种子内生微生物群落组成及功能[J]. 干旱区研究, 2025, 42(9): 1640-1649. |
| [2] | 李金辉, 胡静, 金红喜, 王祺, 姚泽. 环境因子对不同种源黑果枸杞花青素积累的影响[J]. 干旱区研究, 2025, 42(8): 1525-1535. |
| [3] | 成艳琳, 王家源, 高广磊, 丁国栋, 张英, 赵珮杉, 朱宾宾. 呼伦贝尔沙地樟子松林土壤和根内真菌泛化种和特化种结构与功能特征[J]. 干旱区研究, 2025, 42(6): 1055-1066. |
| [4] | 高海燕, 张胜男, 杨制国, 张雷, 黄海广, 闫德仁. 科尔沁沙地油松固沙林土壤真菌群落结构及功能[J]. 干旱区研究, 2025, 42(1): 118-126. |
| [5] | 崔国龙, 李强峰, 高英, 刘维军, 张梅. 青海大通北川河源区典型植被土壤微生物群落结构特征及影响因素[J]. 干旱区研究, 2024, 41(7): 1195-1206. |
| [6] | 樊秋璇, 杨馥铖, 付江涛, 刘昌义, 胡夏嵩, 邢光延, 赵吉美, 张培豪. 黄河上游夏藏滩巨型滑坡区根-土复合体理化与强度特性[J]. 干旱区研究, 2024, 41(5): 797-811. |
| [7] | 杜华栋, 刘研, 毕银丽, 车旭曦, 拜梦童. 干旱砾漠区不同微地貌单元土壤性状及真菌群落变化特征[J]. 干旱区研究, 2024, 41(3): 421-431. |
| [8] | 白丽丽, 王文颖, 德却拉姆, 刘艳方, 邓艳芳. 祁连山典型植被土壤碳、氮、磷含量及生态化学计量特征的垂直变化[J]. 干旱区研究, 2024, 41(3): 444-455. |
| [9] | 温淼, 冒辛平, 杨捷钧, 孙嘉忆, 吴旭东, 韩凤朋. 荒漠草原自然和人工植被土壤养分及氮循环功能基因丰度特征研究[J]. 干旱区研究, 2024, 41(12): 2027-2034. |
| [10] | 李娟, 刘阳, 刘光琇, 程亮, 郭青云, 张威, 章高森. 鄯善库木塔格沙漠北缘细菌群落结构特征及影响因素[J]. 干旱区研究, 2023, 40(8): 1358-1368. |
| [11] | 王思淇, 张建军, 张彦勤, 赵炯昌, 胡亚伟, 李阳, 唐鹏, 卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151. |
| [12] | 热依拉穆·麦麦提吐尔逊, 哈里布努尔, 艾沙江·阿不都沙拉木. 异质生境下黑果枸杞异形果实的种子休眠及萌发特性[J]. 干旱区研究, 2023, 40(7): 1152-1163. |
| [13] | 张丽娟, 杜瀚, 贠丰泽, 马应辉, 张新强, 阿瓦古丽·图尔荪, 马正海. 天山乌鲁木齐河源1号冰川表层雪微生物多样性分析[J]. 干旱区研究, 2023, 40(4): 670-680. |
| [14] | 吴蕊, 曹红雨, 高广磊, 于明含, 丁国栋, 张英, 赵珮杉. 科尔沁沙地水盐处理对油莎豆农田土壤细菌群落及植株生理特性的影响[J]. 干旱区研究, 2023, 40(12): 1938-1948. |
| [15] | 张曼玉, 王志涛, 邓磊, 周虹. 共和盆地不同灌木群落生物土壤结皮理化性质差异[J]. 干旱区研究, 2023, 40(11): 1797-1805. |
|
||