干旱区研究 ›› 2023, Vol. 40 ›› Issue (4): 670-680.doi: 10.13866/j.azr.2023.04.16 cstr: 32277.14.j.azr.2023.04.16
• 其他 • 上一篇
张丽娟1(),杜瀚1,贠丰泽1,马应辉2,张新强1,阿瓦古丽·图尔荪1,马正海1()
收稿日期:
2022-04-24
修回日期:
2023-02-09
出版日期:
2023-04-15
发布日期:
2023-04-28
作者简介:
张丽娟(1997-),女,硕士研究生,主要从事微生物学研究. E-mail: 基金资助:
ZHANG Lijuan1(),DU Han1,YUN Fengze1,MA Yinghui2,ZHANG Xinqiang1,Awaguli TUERSUN1,MA Zhenghai1()
Received:
2022-04-24
Revised:
2023-02-09
Published:
2023-04-15
Online:
2023-04-28
摘要:
为探究天山乌鲁木齐河源1号冰川(简称“乌源1号冰川”)积雪微生物群落特征及其与气候环境的关系,采集该区域2021年春季(4月)海拔3549 m处(TSX1)以及夏季(6月)海拔3770 m处(TSX2)和海拔3800 m处(TSX3)表层雪样,针对细菌16S rDNA V3-V4区、古菌16S rDNA V4-V5区和真菌ITS2区分别进行高通量测序,分析雪样中细菌、古菌和真菌的多样性。结果表明:(1) 乌源1号冰川表层雪微生物多样性具有季节性差异,细菌多样性春季较高夏季较低,而真菌多样性则相反。(2) 在物种组成上,细菌优势门为Proteobacteria(58.13%~89.10%)和Bacteroidetes(4.24%~40.74%),优势属为Flavobacterium(2.32%~33.64%)和Polaromonas(0.01%~24.72%);古菌优势门为Thaumarchaeota(38.10%~97.55%),其次为Nanoarchaeaeota(0%~61.90%)和Euryarchaeota(0%~2.82%);真菌优势门为Ascomycota(7.06%~88.43%)和Monoblepharidomycota(36.21%~40.78%),优势属为Aspergillus(0.16%~81.04%)和Rhodotorula(0.02%~8.05%)。(3) 网络互作分析表明,微生物网络互作以正相关连接为主(97.3%),负相关连接仅占2.7%,互作关系趋于合作关系。(4) 乌源1号冰川表层雪中具有丰富的微生物,微生物群落的季节变化反映了微生物对不同季节大气环流的响应。
张丽娟, 杜瀚, 贠丰泽, 马应辉, 张新强, 阿瓦古丽·图尔荪, 马正海. 天山乌鲁木齐河源1号冰川表层雪微生物多样性分析[J]. 干旱区研究, 2023, 40(4): 670-680.
ZHANG Lijuan, DU Han, YUN Fengze, MA Yinghui, ZHANG Xinqiang, Awaguli TUERSUN, MA Zhenghai. Analysis of the microbial diversity of the surface snow from Glacier No. 1 at the headwaters of Urumqi River, Tianshan Mountains[J]. Arid Zone Research, 2023, 40(4): 670-680.
[1] | Liu Y, Yao T, Kang S, et al. Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest[J]. Chinese Science Bulletin, 2006, 51(12): 1476-1486. |
[2] | 马晓军, 刘炜, 侯书贵, 等. 不同类型冰川雪中可培养细菌多样性变化及其与环境因子关系研究[J]. 冰川冻土, 2009, 31(3): 483-489. |
[Ma Xiaojun, Liu Wei, Hou Shugui, et al. Culturable bacteria in snow pits of different type glaciers: Diversity and relationship with environment[J]. Journal of Glaciology and Geocryology, 2009, 31(3): 483-489.] | |
[3] |
Lutz S, Anesio A M, Raiswell R, et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers[J]. Nature Communications, 2016, 7(1): 11968.
doi: 10.1038/ncomms11968 |
[4] |
刘勇勤, 姚檀栋, 康世昌, 等. 珠穆朗玛峰地区东绒布冰川冰雪微生物群落及其季节变化[J]. 科学通报, 2006, 51(11): 1287-1296.
doi: 10.1007/s11434-006-1287-x |
[Liu Yongqin, Yao Tandong, Kang Shichang, et al. Characteristics of bacterial community in main habitats above 6000 m on the north slope of Mount Everest[J]. Chinese Science Bulletin, 2006, 51(11): 1287-1296.]
doi: 10.1007/s11434-006-1287-x |
|
[5] | 刘晓波, 康世昌, 姚檀栋, 等. 各拉丹冬峰果曲冰川雪中细菌的季节变化特征[J]. 冰川冻土, 2009, 31(4): 634-641. |
[Liu Xiaobo, Kang Shichang, Yao Tandong, et al. The seasonal change of bacterial abundance and diversity in snow of the Guoqu Glacier, Mt. Geladaindong[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 634-641.] | |
[6] | 王海伟. 天山1号冰川表面雪中细菌群落的季节性变化研究[D]. 兰州: 兰州大学, 2007. |
[Wang Haiwei. Seasonal Changes of Bacterial Flora in Surface Snow from Urumqi Glacier No.1 in the Tianshan Mountains, China[D]. Lanzhou: Lanzhou University, 2007.] | |
[7] | Smirnova M, Miamin U, Kohler A, et al. Isolation and characterization of fast-growing green snow bacteria from coastal East Antarctica[J]. Microbiologyopen, 2021, 10(1): e1152. |
[8] | 苗运玲, 于永波, 霍达, 等. 中天山北坡冬季降雪变化及其影响因子分析[J]. 干旱区研究, 2023, 40(1): 9-18. |
[Miao Yunling, Yu Yongbo, Huo Da, et al. Analysis of winter snowfall variability and its influencing factors on the north slopes of the middle Tianshan Mountains[J]. Arid Zone Research, 2023, 40(1): 9-18.] | |
[9] |
Luo B, Sun H, Zhang Y, et al. Habitat-specificity and diversity of culturable cold-adapted yeasts of a cold-based glacier in the Tianshan Mountains, northwestern China[J]. Applied Microbiology and Biotechnology, 2019, 103(5): 2311-2327.
doi: 10.1007/s00253-018-9512-5 pmid: 30483846 |
[10] | 刘雨薇, 田伊林, 张振兴, 等. 冰川及雪线后退对河流水生生物影响的研究进展[J]. 生态科学, 2019, 38(6): 199-207. |
[Liu Yuwei, Tian Yilin, Zhang Zhenxing, et al. Research progress on the effect of retreating glaciers and snow lines on river hydrobiology[J]. Ecological Science, 2019, 38(6): 199-207.] | |
[11] | Xuemei L, Pei G, Qian L, et al. Muti-paths impact from climate change on snow cover in Tianshan Mountainous area of China[J]. Advances in Climate Change Research, 2016, 12(4): 303-312. |
[12] | 张坤, 李忠勤, 王飞腾, 等. 天山乌鲁木齐河源1号冰川积累区气溶胶和表层雪中可溶性矿物粉尘的变化特征及相互关系——以Ca2+、Mg2+为例[J]. 冰川冻土, 2008, 30(1): 113-118. |
[Zhang Kun, Li Zhongqin, Wang Feiteng, et al. Soluble mineral dusts in aerosol and surface snow on the Glacier No.1 at the headwaters of Urumqi River, East Tianshan Mountains: Characteristics and their interrelation-taking calcium and magnesium as examples[J]. Journal of Glaciology and Geocryology, 2008, 30(1): 113-118.] | |
[13] | 陶玲, 顾燕玲, 郑晓吉, 等. 天山乌鲁木齐河源1号冰川融水可培养细菌生理生化特性及其系统发育[J]. 冰川冻土, 2015, 37(2): 511-521. |
[Tao Lin, Gu Yanlin, Zheng Xiaoji, et al. Cultivable bacteria isolated from the meltwater of the Glacier No.1 at headwater of the Urumqi River in Tianshan Mountains: Physiological-biochemical characteristics and phylogeny[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 511-521.] | |
[14] | 张寅生, 康尔泗, 刘潮海, 等. 天山乌鲁木齐河流域山区气候特征分析[J]. 冰川冻土, 1994, 16(4): 333-341. |
[Zhang Yinsheng, Kang Ersi, Liu Chaohai, et al. The climatic features of Tianshan Urumqi River Valley[J]. Journal of Glaciology and Geocryology, 1994, 16(4): 333-341.] | |
[15] |
李宏亮, 王璞玉, 李忠勤, 等. 天山乌鲁木齐河源1号冰川东支能量-物质平衡模拟研究[J]. 冰川冻土, 2021, 43(1): 24-35.
doi: 10.7522/j.issn.1000-0240.2019.1002 |
[Li Hongliang, Wang Puyu, Li Zhongqin, et al. Study on the energy-mass balance simulation of the east branch of the Urumgi Glacier No.1, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 24-35.]
doi: 10.7522/j.issn.1000-0240.2019.1002 |
|
[16] | 曹丽君, 孙慧兰, 兰小丽, 等. 新疆天山极端干湿事件时空演变特征[J]. 干旱区研究, 2021, 38(1): 188-197. |
[Cao Lijun, Sun Huilan, Lan Xiaoli, et al. Spatio-temporal evolution of the extreme dry and wet events in Tianshan Mountains, Xinjiang, China[J]. Arid Zone Research, 2021, 38(1): 188-197.] | |
[17] |
Li Z, Edwards R, Mosley-Thompson E, et al. Seasonal variability of ionic concentrations in surface snow and elution processes in snow-firn packs at the PGPI site on Ürümqi glacier No. 1, eastern Tien Shan, China[J]. Annals of Glaciology, 2006, 43(1): 250-256.
doi: 10.3189/172756406781812069 |
[18] |
Zeng Q, An S. Identifying the biogeographic patterns of rare and abundant bacterial communities using different primer sets on the Loess Plateau[J]. Microorganisms, 2021, 9(1): 139.
doi: 10.3390/microorganisms9010139 |
[19] |
Wei S, Cui H, Zhang Y, et al. Comparative evaluation of three archaeal primer pairs for exploring archaeal communities in deep-sea sediments and permafrost soils[J]. Extremophiles, 2019, 23(6): 747-757.
doi: 10.1007/s00792-019-01128-1 pmid: 31489482 |
[20] |
Op De Beeck M, Lievens B, Busschaert P, et al. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies[J]. PLoS One, 2014, 9(6): e97629.
doi: 10.1371/journal.pone.0097629 |
[21] | Liu Y, Yao T, Kang S, et al. Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest[J]. Chinese Science Bulletin, 2006, 51(12): 1476-1486. |
[22] | Ruisi S, Barreca D, Selbmann L, et al. Fungi in Antarctica[J]. Reviews in Environmental Science & Bio/technology, 2007, 6(1-3): 127-141. |
[23] | 向燕, 李建光, 关梅, 等. 好氧氨氧化微生物生态学研究进展[J]. 贵州农业科学, 2012, 40(9): 115-120. |
[Xiang Yan, Li Jianguang, Guan Mei, et al. Advances in microbial ecology of aerobic ammonia-oxidizing microorganisms[J]. Guizhou Agricultural Sciences, 2012, 40(9): 115-120.] | |
[24] |
Urakawa H, Tajima Y, Numata Y, et al. Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems[J]. Applied and Environmental Microbiology, 2008, 74(3): 894-900.
doi: 10.1128/AEM.01529-07 pmid: 18065610 |
[25] | 刘勇勤, 姚檀栋, 康世昌, 等. 珠穆朗玛峰北坡6000 m以上主要生境细菌群落特征[J]. 科学通报, 2007, 52(13): 1542-1547. |
[Liu Yongqin, Yao Tandong, Kang Shichang, et al. Characteristics of bacterial community in main habitats above 6000 m on the north slope of Mount Everest[J]. Chinese Science Bulletin, 2007, 52(13): 1542-1547.] | |
[26] |
Hell K, Edwards A, Zarsky J, et al. The dynamic bacterial communities of a melting high Arctic glacier snowpack[J]. The ISME Journal, 2013, 7(9): 1814-1826.
doi: 10.1038/ismej.2013.51 |
[27] |
Xiang S R, Shang T C, Chen Y, et al. Dominant bacteria and biomass in the Kuytun 51 Glacier[J]. Applied and Environmental Microbiology, 2009, 75(22): 7287-7290.
doi: 10.1128/AEM.00915-09 |
[28] |
Zhang W, Zhang G, Liu G, et al. Diversity of bacterial communities in the snowcover at Tianshan Number 1 Glacier and its relation to climate and environment[J]. Geomicrobiology Journal, 2012, 29(5): 459-469.
doi: 10.1080/01490451.2011.581329 |
[29] |
Pester M, Schleper C, Wagner M. The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology[J]. Current Opinion in Microbiology, 2011, 14(3): 300-306.
doi: 10.1016/j.mib.2011.04.007 pmid: 21546306 |
[30] |
Pitcher A, Rychlik N, Hopmans E C, et al. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon[J]. The ISME Journal, 2010, 4(4): 542-552.
doi: 10.1038/ismej.2009.138 |
[31] |
Tung H C, Bramall N E, Price P B. Microbial origin of excess methane in glacial ice and implications for life on Mars[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(51): 18292-18296.
pmid: 16339015 |
[32] |
Skidmore M L, Foght J M, Sharp M J, et al. Microbial life beneath a high arctic glacier[J]. Applied and Environmental Microbiology, 2000, 66(8): 3214-3220.
doi: 10.1128/AEM.66.8.3214-3220.2000 pmid: 10919772 |
[33] |
Ma L J, Rogers S O, Catranis C M, et al. Detection and characterization of ancient fungi entrapped in glacial ice[J]. Mycologia, 2000, 92(2): 286-295.
doi: 10.1080/00275514.2000.12061156 |
[34] |
Dresch P, Falbesoner J, Ennemoser C, et al. Emerging from the ice-fungal communities are diverse and dynamic in earliest soil developmental stages of a receding glacier[J]. Environmental Microbiology, 2019, 21(5): 1864-1880.
doi: 10.1111/1462-2920.14598 pmid: 30888722 |
[35] |
Fiołka M J, Takeuchi N, Sofińska-Chmiel W, et al. Morphological and spectroscopic analysis of snow and glacier algae and their parasitic fungi on different glaciers of Svalbard[J]. Scientific Reports, 2021, 11(1): 1-18.
doi: 10.1038/s41598-020-79139-8 |
[36] |
Oliver M, Ursula P. Ectomycorrhiza of Kobresia myosuroides at a primary successional glacier forefront[J]. Mycorrhiza, 2008, 18(6-7): 355-362.
doi: 10.1007/s00572-008-0188-z pmid: 18679725 |
[37] |
Jolanta M, Frank K, Valérie H, et al. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA-and two protein-coding genes[J]. Mycologia, 2006, 98(6): 1088-1103.
doi: 10.1080/15572536.2006.11832636 |
[38] | 赵庆庆, 解金昆, 高永超, 等. 不同水文条件下黄河口滨海湿地土壤真菌群落的分布特征[J]. 环境科学学报, 2022, 42(1): 95-103. |
[Zhao Qingqing, Xie Jinkun, Gao Yongchao, et al. The distribution pattern of soil fungal community in coastal wetlands with different hydrologic conditions in the Yellow River Estuary[J]. Acta Scientiae Circumstantiae, 2022, 42(1): 95-103.] | |
[39] |
Rosa L H, Pinto O, Coelho L C, et al. Ecological succession of fungal and bacterial communities in Antarctic mosses affected by a fairy ring disease[J]. Extremophiles, 25(5-6): 471-481.
doi: 10.1007/s00792-021-01240-1 |
[40] | Bignell E. Aspergillus: Molecular Biology and Genomics. By Masayuki Machida and Katsuya Gomi[M]. Wiley Online Library, 2010: 336-337. |
[41] |
Gramss G, Voigt K D, Kirsche B. Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils[J]. Biodegradation, 1999, 10(1): 51-62.
pmid: 10423841 |
[42] | 王叙贤, 顾燕玲, 倪雪姣, 等. 天山乌源1号冰川表面冰尘及底部沉积层真菌群落结构比较及其系统发育分析[J]. 冰川冻土, 2017, 39(4): 781-791. |
[Wang Xuxian, Gu Yanlin, Ni Xuejiao, et al. Composition and phylogeny of fungal community in supraglacial cryoconite and subglacial sediments of the Glacier No.1 at headwaters of the Urumqi River in Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 781-791.] | |
[43] |
Rathore M, Sinha R K, Venkatachalam S, et al. Microbial diversity and associated metabolic potential in the supraglacial habitat of a fast-retreating glacier: a case study of Patsio glacier, North-western Himalaya[J]. Environmental Microbiology Reports, 2022, 14(3): 443-452.
doi: 10.1111/emi4.v14.3 |
[44] |
Zajc J, Gostinčar C, Černoša A, et al. Stress-Tolerant Yeasts: Opportunistic pathogenicity versus biocontrol potential[J]. Genes (Basel), 2019, 10(1): 42.
doi: 10.3390/genes10010042 |
[45] |
Margesin R, Gander S, Zacke G, et al. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts[J]. Extremophiles, 2003, 7(6): 451-458.
pmid: 12942349 |
[46] |
Simon C, Wiezer A, Strittmatter Axel W, et al. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome[J]. Applied and Environmental Microbiology, 2009, 75(23): 7519-7526.
doi: 10.1128/AEM.00946-09 pmid: 19801459 |
[47] | 刘庆, 杨蕾蕾, 周宇光, 等. 冰川细菌冷杆菌属的多样性研究进展[J]. 微生物学报, 2021, 61(4): 807-815. |
[Liu Qing, Yang Leilei, Zhou Yuguang, et al. Research progress on the diversity of glacial bacteria Cryobacterium[J]. Acta Microbiologica Sinica, 2021, 61(4): 807-815.] | |
[48] |
Lutz S, Anesio A M, Edwards A, et al. Linking microbial diversity and functionality of arctic glacial surface habitats[J]. Environmental Microbiology, 2017, 19(2): 551-565.
doi: 10.1111/1462-2920.13494 pmid: 27511455 |
[49] | 姜远丽, 郑晓吉, 史学伟, 等. 天山冻土中嗜冷酵母菌生物多样性[J]. 食品与生物技术学报, 2012, 31(12): 1289-1294. |
[Jiang Yuanli, Zheng Xiaoji, Shi Xuewei, et al. Diversity of psychrotrophic yeast from permafrost soil at the terminus of a glacier in the Tianshan Mountains[J]. Journal of Food Science and Biotechnology, 2012, 31(12): 1289-1294.] | |
[50] |
Christner B C, Kvitko B H, Reeve J N. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole[J]. Extremophiles, 2003, 7(3): 177-183.
pmid: 12768448 |
[51] |
Barahona S, Yuivar Y, Socias G, et al. Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica[J]. Extremophiles, 2016, 20(4): 479-491.
doi: 10.1007/s00792-016-0838-6 pmid: 27215207 |
[52] |
Hassan N, Rafiq M, Hayat M, et al. Psychrophilic and psychrotrophic fungi: A comprehensive review[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15(2): 147-172.
doi: 10.1007/s11157-016-9395-9 |
[1] | 张彬, 郑新军, 王玉刚, 唐立松, 李彦, 杜澜, 田胜川. 1990—2022年天山北坡地区不同开垦年限耕层土壤盐分变化[J]. 干旱区研究, 2024, 41(9): 1435-1445. |
[2] | 李宇航, 余文学, 杨永均, 朱燕峰, 马静, 陈浮. 近60 a天山北坡经济带天然径流量时空变化及归因识别[J]. 干旱区研究, 2024, 41(9): 1446-1455. |
[3] | 周杰, 王旭虎, 杜维波, 周晓雷, 杨洁, 张晓玮. 气候变化背景下的天山云杉潜在分布区预测[J]. 干旱区研究, 2024, 41(7): 1167-1176. |
[4] | 崔国龙, 李强峰, 高英, 刘维军, 张梅. 青海大通北川河源区典型植被土壤微生物群落结构特征及影响因素[J]. 干旱区研究, 2024, 41(7): 1195-1206. |
[5] | 张顺鑫, 吴子豪, 闫庆武, 李桂娥, 牟守国. 基于PLUS-InVEST模型的天山北坡生态系统碳储量时空变化与预测[J]. 干旱区研究, 2024, 41(7): 1228-1237. |
[6] | 李梦帆, 郑江华, 钱安良, 李家辉, 阿迪力江·帕尔合提, 王哲, 马丽莎, 王南. 基于决策树的天山冰湖提取方法研究[J]. 干旱区研究, 2024, 41(10): 1699-1707. |
[7] | 陈春波,李均力,赵炎,夏江,田伟涛,李超锋. 新疆草地时空动态及其对气候变化的响应——以昌吉回族自治州为例[J]. 干旱区研究, 2023, 40(9): 1484-1497. |
[8] | 周小东, 常顺利, 王冠正, 张毓涛, 喻树龙, 张同文. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[9] | 鲁元波, 严成, 宋春武, 李雅娟, 来赪雲. 天山南坡山前荒漠草地植物群落分布对环境因子的响应——以拜城县为例[J]. 干旱区研究, 2023, 40(8): 1346-1357. |
[10] | 李红梅, 巴贺贾依娜尔·铁木尔别克, 常顺利, 古丽哈娜提·波拉提别克, 张毓涛, 李吉枚. MixSIAR和IsoSource模型对比分析天山北坡不同灌木的夏季水分来源[J]. 干旱区研究, 2023, 40(3): 445-455. |
[11] | 何捷, 王璞玉, 李宏亮, 李忠勤, 周平, 牟建新, 余凤臣, 戴玉萍. 托木尔峰青冰滩72号冰川表碛区夏季消融模拟研究[J]. 干旱区研究, 2023, 40(10): 1595-1607. |
[12] | 王冠正, 常顺利, 王建萍, 张毓涛, 孙雪娇, 李翔. 不同坡向雪岭云杉天然更新影响因素分析[J]. 干旱区研究, 2023, 40(10): 1661-1669. |
[13] | 周翔, 王鹏, 布玛丽亚穆·麦麦提, 王秋琰, 岳健. 新疆天山东部森林地表可燃物的热值研究[J]. 干旱区研究, 2023, 40(10): 1670-1677. |
[14] | 苗运玲, 于永波, 霍达, 潘存良, 李如琦. 中天山北坡冬季降雪变化及其影响因子分析[J]. 干旱区研究, 2023, 40(1): 9-18. |
[15] | 卢雅焱,徐晓亮,李基才,冯小华,刘璐媛. 基于InVEST模型的新疆天山碳储量时空演变研究[J]. 干旱区研究, 2022, 39(6): 1896-1906. |
|