干旱区研究 ›› 2025, Vol. 42 ›› Issue (10): 1925-1938.doi: 10.13866/j.azr.2025.10.15 cstr: 32277.14.AZR.20251015
收稿日期:2025-04-07
修回日期:2025-08-04
出版日期:2025-10-15
发布日期:2025-10-22
通讯作者:
侯晓华. E-mail: CHTarim@126.com作者简介:岳胜如(1988-),男,博士,副教授,主要从事气候变化与生态环境遥感研究. E-mail: nmgndysr@163.com
基金资助:
YUE Shengru1,2(
), HU Xuefei1, HOU Xiaohua1(
), MENG Fujun1
Received:2025-04-07
Revised:2025-08-04
Published:2025-10-15
Online:2025-10-22
摘要:
气候变化是影响棉花生产的重要因素。本文分析了DSSAT-CROPGRO-Cotton模型在塔里木河流域棉花生产模拟中的适用性。根据CMIP6气候模式模拟的SSP2-4.5和SSP5-8.5共享社会经济路径下的气候变化数据集,分析了2021—2100年气候变化特征、棉花产量、灌溉量和水分生产率在空间上的变化特征和重心转移规律。结果表明:塔里木河流域2021—2100年棉花生长季气温升高最高可达4.9 ℃,降水平均减少3.4~4.4 mm,辐射平均降低0.6~0.7 MJ∙m-2。DSSAT-CROPGRO-Cotton+GIS耦合模型能够准确地模拟塔里木河流域棉花产量和灌溉量。未来情景下塔里木河流域棉花产量较历史时期增加12.42%~23.96%,灌溉量增加1.76%~21.82%,水分生产率增加0.95%~20.61%。棉花产量、灌溉量和水分生产率在SSP2-4.5和SSP5-8.5情景下分别表现为“增加-停滞”“持续增加”“增加-下降”和“增加-停滞-下降”“持续增加”“增加-停滞-急剧下降”的变化规律。SSP2-4.5情景下棉花产量重心向东北移动,而SSP5-8.5情景下则表现为“东北-西南”的折返状态。未来情景下灌溉重心向东北移动,水分生产率重心向西南移动。
岳胜如, 胡雪菲, 侯晓华, 孟福军. 基于CMIP6模式的塔里木河流域棉花生产评估[J]. 干旱区研究, 2025, 42(10): 1925-1938.
YUE Shengru, HU Xuefei, HOU Xiaohua, MENG Fujun. Cotton production assessment in the Tarim River Basin based on CMIP6 models[J]. Arid Zone Research, 2025, 42(10): 1925-1938.
表1
耦合模式比较计划第六阶段(CMIP6)中13种模式信息"
| 编号 | 名称 | 国家 | 发布年份 | 空间分辨率(经向×纬向) |
|---|---|---|---|---|
| 1 | ACCESS-ESM1-5 | 澳大利亚 | 2019年 | 1.875°×1.241° |
| 2 | BCC-CSM2-MR | 中国 | 2017年 | 1.125°×1.125° |
| 3 | CMCC-ESM2 | 意大利 | 2017年 | 1.25°×0.9375° |
| 4 | ESM2-0 | 中国 | 2022年 | 1.875°×1.875° |
| 5 | INM-CM4-8 | 俄罗斯 | 2016年 | 2.00°×1.50° |
| 6 | INM-CM5-0 | 俄罗斯 | 2016年 | 2.00°×1.50° |
| 7 | IPSL-CM6A-LR | 法国 | 2017年 | 2.50°×1.26° |
| 8 | MPI-ESM1-2-HR | 德国 | 2017年 | 0.9375°×0.9375° |
| 9 | MPI-ESM1-2-LR | 德国 | 2017年 | 1.875°×1.875° |
| 10 | MRI-ESM2-0 | 日本 | 2017年 | 1.125°×1.125° |
| 11 | NESM3 | 中国 | 2016年 | 1.875°×1.875° |
| 12 | NorESM2-MM | 挪威 | 2017年 | 2.50°×2.50° |
| 13 | TaiESM1 | 中国 | 2018年 | 1.25°×0.9375° |
表2
塔里木河流域气象站点信息"
| 区站号 | 站点名称 | 纬度 | 经度 | 海拔/m | 区站号 | 站点名称 | 纬度 | 经度 | 海拔/m |
|---|---|---|---|---|---|---|---|---|---|
| 51559 | 和静 | 42.32°N | 86.40°E | 1100.90 | 51720 | 柯坪 | 40.50°N | 79.05°E | 1161.80 |
| 51567 | 焉耆 | 42.08°N | 86.57°E | 1055.30 | 51722 | 阿瓦提 | 40.65°N | 80.40°E | 1044.30 |
| 51568 | 和硕 | 42.25°N | 86.80°E | 1085.40 | 51730 | 阿拉尔 | 40.55°N | 81.27°E | 1012.20 |
| 51627 | 乌什 | 41.22°N | 79.23°E | 1395.80 | 51765 | 铁干里克 | 40.63°N | 87.70°E | 846.00 |
| 51628 | 阿克苏 | 41.12°N | 80.38°E | 1107.10 | 51777 | 若羌 | 39.03°N | 88.17°E | 887.70 |
| 51629 | 温宿 | 41.27°N | 80.23°E | 1133.10 | 51802 | 英吉沙 | 38.93°N | 76.17°E | 1297.50 |
| 51633 | 拜城 | 41.78°N | 81.90°E | 1229.20 | 51810 | 麦盖提 | 38.92°N | 77.63°E | 1178.20 |
| 51636 | 新和 | 41.55°N | 82.65°E | 1009.80 | 51811 | 莎车 | 38.43°N | 77.27°E | 1231.20 |
| 51639 | 沙雅 | 41.23°N | 82.78°E | 980.40 | 51814 | 叶城 | 37.92°N | 77.40°E | 1360.40 |
| 51642 | 轮台 | 41.82°N | 84.27°E | 982.00 | 51815 | 泽普 | 38.20°N | 77.27°E | 1274.70 |
| 51644 | 库车 | 41.72°N | 82.97°E | 1081.90 | 51818 | 皮山 | 37.62°N | 78.28°E | 1375.40 |
| 51655 | 尉犁 | 41.35°N | 86.27°E | 884.90 | 51826 | 策勒 | 37.02°N | 80.80°E | 1336.50 |
| 51656 | 库尔勒 | 41.73°N | 85.82°E | 899.80 | 51827 | 墨玉 | 37.17°N | 79.63°E | 1348.90 |
| 51704 | 阿图什 | 39.72°N | 76.17°E | 1298.70 | 51828 | 和田 | 37.13°N | 79.93°E | 1375.00 |
| 51707 | 伽师 | 39.50°N | 76.78°E | 1204.70 | 51829 | 洛浦 | 37.08°N | 80.17°E | 1347.90 |
| 51708 | 阿克陶 | 39.15°N | 75.95°E | 1325.10 | 51839 | 民丰 | 37.07°N | 82.72°E | 1409.50 |
| 51709 | 喀什 | 39.48°N | 75.75°E | 1385.60 | 51855 | 且末 | 38.15°N | 85.55°E | 1247.20 |
| 51716 | 巴楚 | 39.80°N | 78.57°E | 1116.50 | 51931 | 于田 | 36.85°N | 81.65°E | 1422.00 |
| 51717 | 岳普湖 | 39.25°N | 76.78°E | 1206.30 |
| [1] | Lin S D, Wang Q J, Deng M J, et al. Assessing the influence of water fertilizer, and climate factors on seed cotton yield under mulched drip irrigation in Xinjiang Agricultural Regions[J]. European Journal of Agronomy, 2024, 152: 127034. |
| [2] | 李娜. 气候变化对棉花生长和产量的影响[D]. 西安: 西北农林科技大学, 2021. |
| [Li Na. Effects of Climate Change on Cotton Growth and Yield[D]. Xi’an: Northwest A & F University, 2021. ] | |
| [3] | Wu H, Xu M, Peng Z Y, et al. Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia[J]. Agricultural Water Management, 2022, 269: 107639. |
| [4] | Adhikari P, Ale S, Bordovsky J P, et al. Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model[J]. Agricultural Water Management, 2016, 164: 317-330. |
| [5] | 李萌. 南疆膜下滴灌棉花灌溉和施肥调控效应及生长模拟研究[D]. 杨凌: 西北农林科技大学, 2020. |
| [Li Meng. Study on Effect of Irrigation and Fertilization Regulation and Simulation of Cotton Growth under Film-mulched Drip Irrigation in Southern Xinjiang[D]. Yangling: Northwest A & F University, 2020. ] | |
| [6] | 杜江涛, 张楠, 龚珂宁, 等. 基于DSSAT模型的南疆膜下滴灌棉花灌溉制度优化[J]. 生态学杂志, 2021, 40(11): 3760-3768. |
| [Du Jiangtao, Zhang Nan, Gong Kening, et al. Optimization of cotton irrigation schedule under mulch drip irrigation in southerm Xinjiang based on DSSAT model[J]. Chinese Journal of Ecology, 2021, 40(11): 3760-3768. ] | |
| [7] | Zhou T J, Chen Z M, Chen X L, et al. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information[J]. Advances in Climate Change Research, 2021, 17(6): 652. |
| [8] | 陈发虎, 谢亭亭, 杨钰杰, 等. 我国西北干旱区“暖湿化”问题及其未来趋势讨论[J]. 中国科学:地球科学, 2023, 53(6): 1246-1262. |
| [Chen Fahu, Xie Tingting, Yang Yujie, et al. Discussion of the “warming and wetting” trend and its future variation in the drylands of Northwest China under global warming[J]. Science China Earth Sciences, 2023, 53(6): 1246-1262. ] | |
| [9] |
山建安, 朱睿, 尹振良, 等. 基于CMIP6模式的中国西北地区干旱时空变化[J]. 干旱区研究, 2024, 41(5): 717-729.
doi: 10.13866/j.azr.2024.05.01 |
|
[Shan Jianan, Zhu Rui, Yin Zhenliang, et al. Spatial and temporal variation of drought in Northwest China based on CMIP6 model[J]. Arid Zone Research, 2024, 41(5): 717-729. ]
doi: 10.13866/j.azr.2024.05.01 |
|
| [10] | Tian X, Dong J Z, Jin S Y, et al. Climate change impacts on regional agricultural irrigation water use in semi-arid environments[J]. Agricultural Water Management, 2023, 281: 108239. |
| [11] |
徐杨, 李秀芬, 葛全胜, 等. 气象干旱对中亚棉花产量的影响[J]. 地理学报, 2022, 77(9): 2338-2352.
doi: 10.11821/dlxb202209014 |
|
[Xu Yang, Li Xiufen, Ge Quansheng, et al. Effect of meteorological drought on cotton yield in Central Asia[J]. Acta Geographica Sinica, 2022, 77(9): 2338-2352. ]
doi: 10.11821/dlxb202209014 |
|
| [12] | Qin Y, Abatzoglou J T, Siebert S, et al. Agricultural risks from changing snowmelt[J]. Nature Climate Change, 2020, 10(5): 459-465. |
| [13] | Wen M N, Chen L Y. Global food crop redistribution reduces water footprint without compromising species diversity[J]. Journal of Cleaner Production, 2023, 383: 135437. |
| [14] | Xie W, Zhu A F, Ali T, et al. Crop switching can enhance environmental sustainability and farmer incomes in China[J]. Nature, 2023, 616(7956): 300-305. |
| [15] |
罗磊, 李曦光, 李萧婷, 等. 气候变化下沙棘在新疆潜在分布格局的变化[J]. 干旱区研究, 2025, 42(3): 511-522.
doi: 10.13866/j.azr.2025.03.11 |
| [Luo Lei, Li Xiguang, Li Xiaoting, et al. Potential distribution pattern of Hippophae rhamnoides in Xinjiang under climate change predicted using the MaxEnt model[J]. Arid Zone Research, 2025, 42(3): 511-522. ] | |
| [16] | Shi X Y, Wang C, Zhao J C, et al. Increasing inconsistency between climate suitability and production of cotton (Gossypium hirsutum L.) in China[J]. Industrial Crops and Products, 2021, 171: 113959. |
| [17] | Li L L, Wu H Q, Gao Y M, et al. Predicting ecologically suitable areas of cotton cultivation using the MaxEnt model in Xinjiang, China[J]. Ecologies, 2023, 4(4): 654-670. |
| [18] | Zhu Y Q, Sun L, Luo Q Y, et al. Spatial optimization of cotton cultivation in Xinjiang: A climate change perspective[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 124: 103523. |
| [19] | Mai J F, Liu G L. Modeling and predicting the effects of climate change on cotton-suitable habitats in the Central Asian arid zone[J]. Industrial Crops and Products, 2023, 191: 115838. |
| [20] | 王兴鹏, 辛朗, 杜江涛, 等. 基于DSSAT模型的南疆膜下滴灌棉花生长与产量模拟[J]. 农业机械学报, 2022, 53(9): 314-321. |
| [Wang Xingpeng, Xin Lang, Du Jiangtao, et al. Simulation of cotton growth and yield under film drip irrigation condition based on DSSAT model in southern Xinjiang[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 314-321. ] | |
| [21] | Fan X W, Duan Q Y, Shen C W, et al. Global surface air temperatures in CMIP6: Historical performance and future changes[J]. Environmental Research Letters, 2020, 15(10): 104056. |
| [22] | Jin Z R, Ge F, Chen Q L, et al. To what extent horizontal resolution improves the simulation of precipitation in CMIP6 HighResMIP models over Southwest China?[J]. Frontiers in Earth Science, 2023, 10: 1003748. |
| [23] | Mahajan S, Evans K J, Branstetter M, et al. Fidelity of precipitation extremes in high resolution global climate simulations[J]. Procedia Computer Science, 2015, 51: 2178. |
| [24] | Li Y, Li N, Javed T, et al. Cotton yield responses to climate change and adaptability of sowing date simulated by AquaCrop model[J]. Industrial Crops and Products, 2024, 212: 118319. |
| [25] | Wang L C, Zhong D H, Chen X X, et al. Impact of climate change on rice growth and yield in China: Analysis based on climate year type[J]. Geography and Sustainability, 2024, 5(4): 548-560. |
| [26] | Yue S R, Wang L C, Cao Q, et al. Assessment of future cotton production in the Tarim River Basin under climate model projections and water management[J]. Journal of Earth Science, 2025, 36(4): 1780-1792. |
| [27] | Li N, Lin H X, Wang T X, et al. Impact of climate change on cotton growth and yields in Xinjiang, China[J]. Field Crops Research, 2020, 247: 107590. |
| [28] | 陈亚宁, 徐宗学. 全球气候变化对新疆塔里木河流域水资源的可能性影响[J]. 中国科学(D辑: 地球科学), 2004, 34(11): 1047-1053. |
| [Chen Yaning, Xu Zongxue. Potential impact of global climate change on water resources in the Tarim River Basin of Xinjiang[J]. Scientia Sinica (Terrae), 2004, 34(11): 1047-1053. ] | |
| [29] |
张音, 孙从建, 刘庚, 等. 近20a塔里木河流域山区NDSI对气候变化的响应[J]. 干旱区研究, 2024, 41(10): 1639-1648.
doi: 10.13866/j.azr.2024.10.03 |
|
[Zhang Yin, Sun Congjian, Liu Geng, et al. Response of NDSI in the Tarim River Basin mountainous areas to climate change over the past 20 years[J]. Arid Zone Research, 2024, 41(10): 1639-1648. ]
doi: 10.13866/j.azr.2024.10.03 |
|
| [30] | 朱世峰, 王卫光, 丁一民, 等. 基于CMIP6的长江中下游未来水稻高温热害时空变化特征[J]. 农业工程学报, 2023, 39(3): 113-122. |
| [Zhu Shifeng, Wang Weiguang, Ding Yimin, et al. Spatiotemporal variation of future heat damage of rice in the Middle and Lower Reaches of the Yangtze River using CMIP6 projections[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(3): 113-122. ] | |
| [31] | Chen X X, Wang L C, Niu Z G, et al. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China[J]. Agricultural and Forest Meteorology, 2020, 282: 107867. |
| [32] | 童成立, 张文菊, 汤阳, 等. 逐日太阳辐射的模拟计算[J]. 中国农业气象, 2005, 26(3): 165-169. |
| [Tong Chengli, Zhang Wenju, Tang Yang, et al. Estimation of daily solar radiation in China[J]. Chinese Journal of Agrometeorology, 2005, 26(3): 165-169. ] | |
| [33] | 王雪姣. 气候变化对新疆棉花物候、产量和品质的影响与适应措施[D]. 北京: 中国农业大学, 2015. |
| [Wang Xuejiao. Impact and Adaptation of Climate Change on Cotton Phenology, Yield and Fiber Quality in Xinjiang[D]. Beijing: China Agricultural University, 2015. ] | |
| [34] | Zhang Q, Yang J H, Wang W, et al. Climatic warming and humidification in the arid region of Northwest China: Multi-scale characteristics and impacts on ecological vegetation[J]. Journal of Meteorological Research, 2021, 35(1): 113-127. |
| [35] | Zhong L H, Hua L J, Yao Y, et al. Interdecadal aridity variations in Central Asia during 1950-2016 regulated by oceanic conditions under the background of global warming[J]. Climate Dynamics, 2021, 56: 3665-3686. |
| [36] | 赵爱琴. 基于大尺度水肥耦合模型估算新疆膜下滴灌棉花生产潜力(英文)[J]. 农业工程学报, 2019, 35(5): 111-118. |
| [Zhao Aiqin. Mulched drip irrigation cotton yield potential estimation based on large-scale water-nitrogen coupling model in Xinjiang, China with limits of water resources[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 111-118. ] | |
| [37] | Kothari K, Ale S, Bordovsky J P, et al. Potential genotype-based climate change adaptation strategies for sustaining cotton production in the Texas High Plains: A simulation study[J]. Field Crops Research, 2021, 271: 108261. |
| [38] | Wang H L, Gan Y T, Wang R Y, et al. Phenological trends in winter wheat and spring cotton in response to climate changes in Northwest China[J]. Agricultural and Forest Meteorology, 2008, 148(8-9): 1242-1251. |
| [39] | Zahid K R, Ali F, Shah F, et al. Response and tolerance mechanism of cotton Gossypium hirsutum L. to elevated temperature stress: A review[J]. Frontiers in Plant Science, 2016, 7: 937. |
| [40] | Yang Y M, Yang Y H, Han S M, et al. Prediction of cotton yield and water demand under climate change and future adaptation measures[J]. Agricultural Water Management, 2014, 144: 42-53. |
| [41] | Wang F, Yang S T, Wei Y, et al. Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China[J]. Science of the Total Environment, 2021, 754: 142030. |
| [42] | Li Q S, Liu Z H, Yang Y H, et al. Evaluation of water resources carrying capacity in Tarim River Basin under game theory combination weights[J]. Ecological Indicators, 2023, 154: 110609. |
| [43] | Gupta R, Mishra A. Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India[J]. Agricultural Systems, 2019, 173: 1-11. |
| [1] | 商淑静, 刘丹辉, 周轶昕, 吴家驹, 陆婷, 李文军. 气候变化背景下软紫草在中国的潜在适生区预测[J]. 干旱区研究, 2025, 42(9): 1628-1639. |
| [2] | 蒋安尧, 陈睿山, 郑利林, 郭晓娜, 孙南沙, 李因帅. “三北”工程区极端降水时空演变特征与影响[J]. 干旱区研究, 2025, 42(8): 1357-1368. |
| [3] | 严应存, 孙树娇, 余迪, 高贵生. 气候变化对柴达木盆地植被绿度的影响及趋势预估[J]. 干旱区研究, 2025, 42(7): 1257-1268. |
| [4] | 邵俊杰, 陶通炼, 李志忠. 古尔班通古特沙漠南缘沉积物粒度和微量元素记录晚全新世气候变化[J]. 干旱区研究, 2025, 42(5): 788-799. |
| [5] | 罗磊, 李曦光, 李萧婷, 王磊, 王蕾. 气候变化下沙棘在新疆潜在分布格局的变化[J]. 干旱区研究, 2025, 42(3): 511-522. |
| [6] | 赵艳芬, 王春成, 潘伯荣. 气候变化下脓疮草在中国的适宜分布区预测[J]. 干旱区研究, 2025, 42(10): 1851-1859. |
| [7] | 黄娩婷, 穆振侠, 杨荣钦, 赵世康, 李子龙. 基于CMIP6气候变化下塔里木河流域天然植被生态需水预估[J]. 干旱区研究, 2025, 42(10): 1860-1875. |
| [8] | 邹彬, 邹珊, 杨余辉. 1990—2023年新疆地表水体面积动态变化及其驱动因素[J]. 干旱区研究, 2025, 42(1): 40-50. |
| [9] | 谢刚, 王甜甜, 于涛, 董靖玮, 陈世强, 王梦晓, 张圣杰, 张浩铭. 青海湖入湖口水温演变初步研究[J]. 干旱区研究, 2024, 41(9): 1503-1513. |
| [10] | 吕壮壮, 乔庆庆, 董孙艺, 汪冬. 中中新世气候适宜期全球变暖背景下亚洲内陆干旱区古气候演化特征及驱动机制[J]. 干旱区研究, 2024, 41(8): 1309-1322. |
| [11] | 周杰, 王旭虎, 杜维波, 周晓雷, 杨洁, 张晓玮. 气候变化背景下的天山云杉潜在分布区预测[J]. 干旱区研究, 2024, 41(7): 1167-1176. |
| [12] | 杨荣钦, 肖玉磊, 池苗苗, 穆振侠. 近20 a塔里木河流域人类活动及景观生态风险时空变化[J]. 干旱区研究, 2024, 41(6): 1010-1020. |
| [13] | 梁双河, 牛最荣, 贾玲. 祖厉河干流近65 a径流变化及归因分析[J]. 干旱区研究, 2024, 41(6): 928-939. |
| [14] | 唐可欣, 郭建斌, 何亮, 陈林, 万龙. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973. |
| [15] | 山建安, 朱睿, 尹振良, 杨华庆, 张薇, 方春爽. 基于CMIP6模式的中国西北地区干旱时空变化[J]. 干旱区研究, 2024, 41(5): 717-729. |
|
||