干旱区研究 ›› 2024, Vol. 41 ›› Issue (6): 964-973.doi: 10.13866/j.azr.2024.06.06 cstr: 32277.14.j.azr.2024.06.06
收稿日期:
2023-11-13
修回日期:
2024-03-15
出版日期:
2024-06-15
发布日期:
2024-07-03
作者简介:
唐可欣(1999-),女,硕士研究生,主要从事流域自然地理过程研究. E-mail: kkxx88999@163.com
基金资助:
TANG Kexin1(), GUO Jianbin1(), HE Liang1, CHEN Lin2, WAN Long1
Received:
2023-11-13
Revised:
2024-03-15
Published:
2024-06-15
Online:
2024-07-03
摘要:
为明晰中国旱区生态系统的固碳能力及其变化机制,本研究根据AI指数划分了中国旱区范围,并基于MODIS植被总初级生产力(GPP)数据集,结合气温、降水、饱和水气压差(VPD)、土壤含水量等气象数据和土地利用等人类活动,探究了中国旱区2001—2020年植被固碳能力的时空演变特征及影响因素。结果表明:(1) 中国旱区GPP 20 a间呈增长趋势,其中,64.72%的区域GPP呈显著增长趋势;(2) 温度对GPP的影响最低,相对贡献率为21.70%,降水和土壤含水量是GPP增长的主导因子,二者贡献率总和超过55%。随干旱程度加剧,水分胁迫作用逐渐增强。不同植被类型下,除混交林和高山植被外,降水是影响其他植被类型GPP变化最重要的气候因子;(3) 土壤类型及地貌类型的差异是影响GPP空间分异的主导因子,水分、土地利用类型因素也有重要作用,任意两要素间的交互作用解释力均大于单一要素的解释力,以土壤类型与其他各因子的交互作用最为显著。研究结果对深入理解我国旱区生态系统碳汇演变特征及其对外界环境因子响应机制具有重要理论意义。
唐可欣, 郭建斌, 何亮, 陈林, 万龙. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973.
TANG Kexin, GUO Jianbin, HE Liang, CHEN Lin, WAN Long. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands[J]. Arid Zone Research, 2024, 41(6): 964-973.
表1
GPP空间格局的因子交互解释力等级排序"
年份 | 交互解释力排序(前10) |
---|---|
2005年 | 土壤类型∩地貌类型=0.760>土壤类型∩降水=0.726>土地利用类型∩土壤类型=0.725>土壤类型∩海拔=0.719>土壤类型∩AI指数=0.716=土壤类型∩相对湿度=0.716 >VPD∩土壤类型=0.696>土壤类型∩温度=0.689>土壤类型∩土壤含水量=0.687 |
2010年 | 土壤类型∩地貌类型=0.760>土壤类型∩相对湿度=0.744>土地利用类型∩土壤类型=0.728>土壤类型∩海拔=0.725>土壤类型∩AI指数=0.724>土壤类型∩降水=0.722>土壤类型∩温度=0.703>土壤类型∩海拔=0.743>土壤类型∩VPD=0.697>土壤类型∩土壤含水量=0.695 |
2015年 | 土壤类型∩地貌类型=0.787>土壤类型∩AI指数=0.785> 土壤类型∩相对湿度=0.780>土壤类型∩降水=0.779>地貌类型∩海拔=0.752> 温度∩土壤类型=0.724>土壤类型∩VPD=0.721>土壤类型∩潜在蒸散发=0.714>土壤类型∩土壤含水量=0.713> 地貌类型∩降水=0.710>地貌类型∩AI指数=0.705 |
2020年 | 土壤类型∩AI指数=0.839>地貌类型∩AI指数=0.786>地貌类型∩土壤类型=0.776>土壤类型∩土壤含水量=0.765>土壤类型∩降水=0.764>AI指数∩海拔=0.757>土壤类型∩相对湿度=0.756>土壤类型∩土地利用类型=0.750>土壤类型∩海拔=0.740>土壤类型∩温度=0.717 |
表2
2001年、2020年土地转移矩阵"
2020年 | 2001年 | ||||||||
---|---|---|---|---|---|---|---|---|---|
建筑用地 | 草地 | 耕地 | 灌丛 | 林地 | 裸地 | 湿地 | 水体 | 冰/雪地 | |
建筑用地 | 36479.1 | 5875.9 | 21965.2 | 1.9 | 289.8 | 1880.0 | 0 | 1327.5 | 0 |
草地 | 281.7 | 2226644 | 84251.6 | 1826.8 | 5502.1 | 118799 | 63.8 | 2462.6 | 830.2 |
耕地 | 39.6 | 33231.4 | 8284.5 | 1633.6 | 234645 | 29.6 | 4.4 | 111.6 | 10.2 |
灌丛 | 0 | 925.9 | 17.4 | 2082.1 | 793.9 | 0 | 0 | 0.1 | 0 |
林地 | 2713.2 | 87477.7 | 479383 | 38.8 | 4932.5 | 13465.6 | 23.7 | 1829 | |
裸地 | 54.0 | 92851.3 | 1482.38 | 0 | 11.0 | 1761150 | 16.8 | 1849.2 | 8287.2 |
湿地 | 0 | 267.6 | 16.3 | 0 | 0.8 | 12.2 | 485.6 | 4.7 | 0.2 |
水体 | 589.6 | 6088.0 | 2688.4 | 0.1 | 46.8 | 9125.8 | 24.3 | 53631.8 | 619.5 |
冰/雪地 | 0 | 889.6 | 0.03 | 0 | 0.2 | 8902.8 | 0.1 | 70.0 | 44194.3 |
[1] | 刘坤, 张慧, 孔令辉, 等. 陆地生态系统碳汇评估方法研究进展[J]. 生态学报, 2023, 43(10): 4294-4307. |
[Liu Kun, Zhang Hui, Kong Linghui, et al. An overview of terrestrial ecosystem carbon sink assessment methods towards achieving carbon neutrality in China[J]. Acta Ecologica Sinica, 2023, 43(10): 4294-4307. ] | |
[2] | 陶波, 葛全胜, 李克让, 等. 陆地生态系统碳循环研究进展[J]. 地理研究, 2001, 20(5): 564-575. |
[Tao Bo, Ge Quansheng, Li Kerang, et al. Progress in the studies on carbon cycle in terrestrial ecosystem[J]. Geographical Research, 2001, 20(5): 564-575. ]
doi: 10.11821/yj2001050006 |
|
[3] | 赵宁, 周蕾, 庄杰, 等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报, 2021, 41(19): 7648-7658. |
[Zhao Ning, Zhou Lei, Zhuang Jie, et al. Integration analysis of the carbon sources and sinks in terrestrial ecosystems, China[J]. Acta Ecologica Sinica, 2021, 41(19): 7648-7658. ] | |
[4] | He L, Guo J B, Jiang Q O, et al. How did the Chinese Loess Plateau turn green from 2001 to 2020? An explanation using satellite data[J]. Catena, 2022, 214: 106246. |
[5] | 乌日娜, 刘步云, 包玉海. 干旱对中国北方草原总初级生产力影响的时滞和累积效应[J]. 干旱区研究, 2023, 40(10): 1644-1660. |
[Wu Rina, Liu Buyun, Bao Yuhai. Time lag and cumulative effect of drought on gross primary productivity in the grasslands of northern China[J]. Arid Zone Research, 2023, 40(10): 1644-1660. ] | |
[6] | 杨丹, 王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593. |
[Yang Dan, Wang Xiaofeng. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 584-593. ] | |
[7] | Lian X, Piao S L, Chen A P, et al. Multifaceted characteristics of dryland aridity changes in a warming world[J]. Nature Reviews Earth & Environment, 2021, 2: 232-250. |
[8] | Huang J P, Yu H P, Dai A G, et al. Drylands face potential threat under 2 ℃ global warming target[J]. Nature Climate Change, 2017, 7(6): 417-422. |
[9] | 许丽. 气候变化和植被变绿对中国北方旱区土壤水分动态的影响机制[D]. 西安: 长安大学, 2023. |
[Xu Li. Compound Effects of Climate Change and Vegetation Greening on Soil Moisture Variability in the Northern Drylands of China[D]. Xi’an: Chang’an University, 2023. ] | |
[10] | Sun Z Y, Wang X F, Yamamoto H, et al. Spatial pattern of GPP variations in terrestrial ecosystems and its drivers: Climatic factors, CO2 concentration and land-cover change, 1982-2015[J]. Ecological Informatics, 2018, 46: 156-165. |
[11] |
Yu G R, Song X, Wang Q F, et al. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables[J]. New Phytologist, 2008, 177: 927-937.
doi: 10.1111/j.1469-8137.2007.02316.x pmid: 18069958 |
[12] |
林小丁, 常乐, 冯丹. 2000—2019年青海地区植被总初级生产力遥感估算及时空变化分析[J]. 草业学报, 2021, 30(6): 16-27.
doi: 10.11686/cyxb2020354 |
[Lin Xiaoding, Chang Le, Feng Dan. Remote-sensing estimation of vegetation gross primary productivity and its spatiotemporal changes in Qinghai Province from 2000 to 2019[J]. Acta Prataculturae Sinica, 2021, 30(6): 16-27. ]
doi: 10.11686/cyxb2020354 |
|
[13] |
宋进喜, 齐贵增, 佘敦先, 等. 中国植被生产力对干湿变化的响应[J]. 地理学报, 2023, 78(7): 1764-1778.
doi: 10.11821/dlxb202307015 |
[Song Jinxi, Qi Guizeng, She Dunxian, et al. Response of vegetation productivity to wet and dry changes in China[J]. Acta Geographica Sinica, 2023, 78(7): 1764-1778. ]
doi: 10.11821/dlxb202307015 |
|
[14] | Zhao X, Tan K, Zhao S, et al. Changing climate affects vegetation growth in the arid region of the northwestern China[J]. Journal of Arid Environments, 2011, 75(10): 946-952. |
[15] | 高振翔, 叶剑, 丁仁惠, 等. 中国植被总初级生产力对气候变化的响应[J]. 水土保持研究, 2022, 29(4): 394-399, 414. |
[Gao Zhenxiang, Ye Jian, Ding Renhui, et al. Response of vegetation of gross primary productivity to climate change in China[J]. Research of Soil and Water Conservation, 2022, 29(4): 394-399, 414. ] | |
[16] | Liu L B, Gudmundsson L, Hauser M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communication, 2020, 11: 4892. |
[17] | 茆杨, 蒋勇军, 张彩云, 等. 近20年来西南地区植被净初级生产力时空变化与影响因素及其对生态工程响应[J]. 生态学报, 2022, 42(7): 2878-2890. |
[Mao Yang, Jiang Yongjun, Zhang Caiyun, et al. Spatio-temporal changes and influencing factors of vegetation net primary productivity in Southwest China in the past 20 years and its response to ecological engineering[J]. Acta Ecologica Sinica, 2022, 42(7): 2878-2890. ] | |
[18] | 唐希颖, 武红, 董金玮, 等. 沙化和退化状态对甘南草地生态系统固碳的影响[J]. 生态学杂志, 2022, 41(2): 278-286. |
[Tang Xiying, Wu Hong, Dong Jinwei, et al. Effects of desertification and degradation on carbon sequestration of grassland ecosystem in Gannan[J]. Chinese Journal of Ecology, 2022, 41(2): 278-286. ]
doi: DOI: 10.13292/j.1000-4890.202202.037 |
|
[19] | 王娟, 王钊, 郭斌, 等. 陕西黄河流域植被碳利用率时空特征及对气候的敏感性研究[J]. 干旱区研究, 2023, 40(12): 1959-1968. |
[Wang Juan, Wang Zhao, Guo Bin, et al. Spatiotemporal characteristics of vegetation carbon use efficiency and its sensitivity to climate in the Yellow River Basin in Shaanxi Province[J]. Arid Zone Research, 2023, 40(12): 1959-1968. ] | |
[20] | 范双萍. 甘肃陇中地区近55年潜在蒸散量及干旱指数演变趋势[J]. 地球环境学报, 2018, 9(2): 172-181. |
[Fan Shuangping. Variation tendency of potential evapotranspiration and aridity index in central Gansu Province in recent 55 years[J]. Journal of Earth Environment, 2018, 9(2): 172-181. ] | |
[21] | He B, Wang S R, Guo L L, et al. Aridity change and its correlation with greening over drylands[J]. Agricultural and Forest Meteorology, 2019, 278: 107663. |
[22] | 许丽, 高光耀, 王晓峰, 等. 气候变化和人类活动对中国北方旱区植被变绿的定量贡献[J]. 生态学报, 2023, 43(17): 7274-7283. |
[Xu Li, Gao Guangyao, Wang Xiaofeng, et al. Quantifying the contributions of climate change and human activities to vegetation greening in the drylands of northern China[J]. Acta Ecologica Sinica, 2023, 43(17): 7274-7283. ] | |
[23] | Cheng X R, Huang M B, Shao M G, et al. A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom grown in two soils in a semiarid region[J]. Plant and Soil, 2019 315: 149-161. |
[24] | Deng L, Yan W M, Zhang Y W, et al. Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China[J]. Forest Ecology and Management, 2016, 366: 1-10. |
[25] | 王永锋, 靖娟利, 马炳鑫. 滇黔桂岩溶区ET时空特征及气候因子驱动[J]. 水土保持研究, 2022, 29(5): 235-243. |
[Wang Yongfeng, Jing Juanli, Ma Bingxin. Spatio temporal characteristics of evapotranspiration and its driving climate factors in the karst areas of Yunnan-Guizhou-Guangxi[J]. Research of Soil and Water Conservation, 2022, 29(5): 235-243. ] | |
[26] | He L, Guo J B, Yang W B, et al. Multifaceted responses of vegetation to average and extreme climate change over global drylands[J]. Science of the total environment, 2023, 858: 159942. |
[27] | Xiao B Q, Bai X Y, Zhao Y, et al. Responses of carbon and water use efficiencies to climate and land use changes in China’s Karst Areas[J]. Journal of Hydrology, 2023, 617: 128968. |
[28] |
陈雪萍, 赵学勇, 张晶, 等. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093.
doi: 10.17521/cjpe.2022.0020 |
[Chen Xueping, Zhao Xueyong, Zhang Jing, et al. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China[J]. Chinese Journal of Plant Ecology, 2023, 47(8): 1082-1093. ]
doi: 10.17521/cjpe.2022.0020 |
|
[29] | 张玉. 退耕还林政策增汇效果的测度模型、空间分异及影响因素分析[D]. 杨凌: 西北农林科技大学, 2023. |
[Zhang Yu. Measurement Model, Spatial Differentiation and Influencing Factor Analyses the Carbon Sequestration Enhancement Effect of Grain for Green policy: A Case Study on Loess Plateau[D]. Yangling: Northwest A & F University, 2023. ] | |
[30] | 张雷明, 上官周平. 黄土高原土壤水分与植被生产力的关系[J]. 干旱区研究, 2002, 19(4): 59-63. |
[Zhang Leiming, Shangguan Zhouping. Relationship between the soil moisture and the vegetation productivity in the Loess Plateau[J]. Arid Zone Research, 2002, 19(4): 59-63. ] | |
[31] | 石志华, 刘梦云, 吴健力, 等. 基于CASA模型的陕西省植被净初级生产力时空分析[J]. 水土保持通报, 2016, 36(1): 206-211. |
[Shi Zhihua, Liu Mengyun, Wu Jianli, et al. Spatial-temporal analysis of vegetation Net Primary Productivity in Shaanxi Province based on CASA model[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 206-211. ] | |
[32] |
刘洪顺, 布仁仓, 王正文, 等. 辽西北沙化土地植被生产力关键影响因素[J]. 应用生态学报, 2024, 35(1): 49-54.
doi: 10.13287/j.1001-9332.202401.009 |
[Liu Hongshun, Bu Rencang, Wang Zhengwen, et al. Critical influencing factors on vegetation productivity in sandy land in northwestern Liaoning Province China[J]. Chinese Journal of Applied Ecology, 2024, 35(1): 49-54. ]
doi: 10.13287/j.1001-9332.202401.009 |
|
[33] | Senviratne S, Corti T, Davin E, et al. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 2012, 99: 125-161. |
[1] | 吕壮壮, 乔庆庆, 董孙艺, 汪冬. 中中新世气候适宜期全球变暖背景下亚洲内陆干旱区古气候演化特征及驱动机制[J]. 干旱区研究, 2024, 41(8): 1309-1322. |
[2] | 周杰, 王旭虎, 杜维波, 周晓雷, 杨洁, 张晓玮. 气候变化背景下的天山云杉潜在分布区预测[J]. 干旱区研究, 2024, 41(7): 1167-1176. |
[3] | 侯嘉烨, 李建华, 王佳蓉, 马海涛, 强泽楷, 樊新刚. 基于SA-RSEI模型的盐池县生态质量演变研究[J]. 干旱区研究, 2024, 41(6): 1045-1058. |
[4] | 梁双河, 牛最荣, 贾玲. 祖厉河干流近65 a径流变化及归因分析[J]. 干旱区研究, 2024, 41(6): 928-939. |
[5] | 李文秀, 燕振刚. 基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J]. 干旱区研究, 2024, 41(4): 590-602. |
[6] | 刘如龙, 赵媛媛, 陈国清, 迟文峰, 刘正佳. 内蒙古黄河流域1990—2020年生境质量评估[J]. 干旱区研究, 2024, 41(4): 674-683. |
[7] | 程秋连, 刘杰, 杨治纬, 张天意, 王斌. 独库高速阿尔先沟段雪崩空间分布及因子探测[J]. 干旱区研究, 2024, 41(2): 220-229. |
[8] | 许宁, 李治国, 梁雪悦, 周晓莹. 基于地形梯度的青藏高原冰川分布格局及成因[J]. 干旱区研究, 2024, 41(2): 230-239. |
[9] | 严莉, 曹广超, 康利刚, 刘梦琳, 叶得力. 基于InVEST模型的共和县生境质量时空变化及驱动因素[J]. 干旱区研究, 2024, 41(2): 314-325. |
[10] | 杨斐, 张文韬, 张飞民, 王澄海. 1961—2022年祁连山气候特征及其变化[J]. 干旱区研究, 2024, 41(10): 1627-1638. |
[11] | 张音, 孙从建, 刘庚, 钞锦龙, 耿甜伟. 近20 a塔里木河流域山区NDSI对气候变化的响应[J]. 干旱区研究, 2024, 41(10): 1639-1648. |
[12] | 程倩, 齐月, 刘明春, 张鹏, 丁文魁, 李兴宇, 任丽雯, 杨华. 气候变化及人类活动背景下石羊河流域生态与水资源变化特征[J]. 干旱区研究, 2024, 41(10): 1672-1684. |
[13] | 樊玉科, 任菊, 王润龙, 周栋栋, 潘自凯, 张晓玮, 周晓雷. 气候变化背景下白皮松在中国潜在适宜分布预测[J]. 干旱区研究, 2024, 41(10): 1719-1730. |
[14] | 齐容镰, 李庆波, 任佳, 邹苗, 杨昊鹏, 魏耀峰, 唐琼. “三北”工程地区植被覆盖变化特征及其驱动力分析——以宁夏为例[J]. 干旱区研究, 2024, 41(10): 1740-1752. |
[15] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
|