干旱区研究 ›› 2024, Vol. 41 ›› Issue (1): 169-180.doi: 10.13866/j.azr.2024.01.16 cstr: 32277.14.j.azr.2024.01.16
• 生态与环境 • 上一篇
收稿日期:
2023-08-16
修回日期:
2023-11-10
出版日期:
2024-01-15
发布日期:
2024-01-24
作者简介:
刘一丹(2001-),女,硕士研究生,主要从事干旱区植被生态研究. E-mail: 基金资助:
LIU Yidan1(),YAO Xiaojun1(),LI Zongxing1,2,HU Jiayu1
Received:
2023-08-16
Revised:
2023-11-10
Published:
2024-01-15
Online:
2024-01-24
摘要:
河西地区不仅是我国重要的生态安全保护优先区,而且是丝绸之路经济带核心地段,开展该地区植被净初级生产力(NPP)评估及驱动力定量分析对于陆地生态系统与大气碳交换、气候变化与人类活动对植被综合作用等研究具有重要的理论价值和现实意义。基于MOD17A3产品数据、土地利用覆盖数据和气象数据,采用R-贡献率和偏相关分析方法,分析了2000—2020年河西地区植被NPP变化特征及土地利用覆被和气候变化对NPP的影响,结果表明:(1)河西地区耕地、水域和居民建筑用地面积整体呈增加趋势,而草地和未利用土地面积有所减少,且2010年后的土地利用覆盖变化(LUCC)整体动态度显著提高,其中,草地、耕地、建设用地和未利用地主导了土地利用类型的相互转换。(2)河西地区整体植被NPP呈增长趋势,2000—2010年和2010—2020年的变化斜率分别为0.86和1.29,且植被NPP具有明显的区域异质性,由东南向西北递减。(3)2000—2020年河西地区LUCC对植被NPP的影响逐渐增大,且气候变化对植被NPP的贡献率普遍高于LUCC,但二者对不同土地利用覆盖类型所起的作用不同,表现为耕地、林地和草地的植被NPP影响因子以气候变化为主导,未利用土地和居民建筑用地的植被NPP影响因子逐步以LUCC为主导。
刘一丹, 姚晓军, 李宗省, 胡家瑜. 气候变化和土地利用覆盖变化对河西地区植被净初级生产力的影响[J]. 干旱区研究, 2024, 41(1): 169-180.
LIU Yidan, YAO Xiaojun, LI Zongxing, HU Jiayu. Impacts of climate change and land use/cover change on the net primary productivity of vegetation in Hexi Region, Northwest China[J]. Arid Zone Research, 2024, 41(1): 169-180.
表1
2000—2020年河西地区各市(州)NPP统计"
市(州) | 不同等级年均NPP占比/% | 年均NPP /(g C·m-2·a-1) | 年NPP /(106 g C·m-2·a-1) | ||||
---|---|---|---|---|---|---|---|
<100 | 100~200 | 200~300 | 300~400 | ≥400 | |||
兰州* | 2.80 | 65.82 | 20.75 | 5.36 | 5.27 | 200.83 | 54.85 |
白银* | 15.02 | 75.05 | 7.11 | 2.57 | 0.25 | 135.18 | 32.94 |
临夏 | 1.07 | 23.20 | 67.68 | 6.31 | 1.75 | 232.59 | 8.59 |
武威 | 53.68 | 16.21 | 12.76 | 11.75 | 5.60 | 123.42 | 123.96 |
金昌 | 42.05 | 34.34 | 13.55 | 9.91 | 0.15 | 125.61 | 29.81 |
张掖 | 43.23 | 23.95 | 17.47 | 12.72 | 2.63 | 143.98 | 173.43 |
酒泉 | 96.77 | 2.49 | 0.50 | 0.24 | 0.00 | 7.07 | 37.84 |
嘉峪关 | 92.18 | 3.91 | 2.69 | 1.22 | 0.00 | 15.43 | 0.60 |
合计 | 76.53 | 12.36 | 5.91 | 3.96 | 1.24 | 984.11 | 462.02 |
表3
不同土地利用类型对2000—2020年总植被净初级生产力的影响量和贡献率"
土地利用类型 | 影响因素 | 2000—2010年 | 2010—2020年 | |||
---|---|---|---|---|---|---|
影响量/(Tg C) | 贡献率/% | 影响量/(Tg C) | 贡献率/% | |||
耕地 | 气候变化 | 56.39 | 73.78 | 66.42 | 90.49 | |
LUCC | 17.04 | 22.28 | 5.98 | 8.15 | ||
林地 | 气候变化 | 43.82 | 99.68 | 15.89 | 98.69 | |
LUCC | -0.11 | 0.26 | -0.19 | 1.24 | ||
草地 | 气候变化 | 125.26 | 99.85 | 99.55 | 96.97 | |
LUCC | 0.15 | 0.12 | -2.59 | 2.69 | ||
水域 | 气候变化 | 4.23 | 97.70 | 2.12 | 76.21 | |
LUCC | -0.07 | 1.80 | 0.59 | 21.28 | ||
居民建筑用地 | 气候变化 | 3.24 | 77.06 | -0.28 | 3.73 | |
LUCC | -0.28 | 6.69 | 7.91 | 95.24 | ||
未利用土地 | 气候变化 | 38.64 | 97.26 | 15.20 | 95.84 | |
LUCC | -0.83 | 2.19 | -0.58 | 3.99 |
[1] |
Lang M, Kõlli R, Nikopensius M, et al. Assessment of MODIS NPP algorithm-based estimates using soil fertility and forest inventory data in mixed hemiboreal forests[J]. Forestry Studies, 2017, 66(1): 49-64.
doi: 10.1515/fsmu-2017-0006 |
[2] | 程淑兰, 方华军, 徐梦, 等. 氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展[J]. 生态学报, 2018, 38(23): 8285-8295. |
[Cheng Shulan, Fang Huajun, Xu Meng, et al. Regulation of plant-soil-microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: A review[J]. Acta Ecologica Sinica, 2018, 38(23): 8285-8295.] | |
[3] |
赵苗苗, 刘熠, 杨吉林, 等. 基于HASM的中国植被NPP时空变化特征及其与气候的关系[J]. 生态环境学报, 2019, 28(2): 215-225.
doi: 10.16258/j.cnki.1674-5906.2019.02.001 |
[Zhao Miaomiao, Liu Yi, Yang Jilin, et al. Spatio-temporal patterns of NPP and its relations to climate in China based on HASM[J]. Ecology and Environmental Sciences, 2019, 28(2): 215-225.]
doi: 10.16258/j.cnki.1674-5906.2019.02.001 |
|
[4] |
Zhang F G, Zeng B, Cao Y, et al. Human activities have markedly altered the pattern and trend of net primary production in the Ili River basin of northwest China under current climate change[J]. Land Degradation & Development, 2022, 33(14): 2585-2595.
doi: 10.1002/ldr.v33.14 |
[5] |
Chen S F, Zhang Q F, Chen Y N, et al. Vegetation change and eco-environmental quality evaluation in the Loess Plateau of China from 2000 to 2020[J]. Remote Sensing, 2023, 15(2): 424.
doi: 10.3390/rs15020424 |
[6] |
Chen X J, Mo X G, Hu S, et al. Contributions of climate change and human activities to ET and GPP trends over north China plain from 2000 to 2014[J]. Journal of Geographical Sciences, 2017, 27(6): 661-680.
doi: 10.1007/s11442-017-1399-z |
[7] | 凡晚晴, 吴华, 樊风雷. 近20年来西藏地区NPP时空变化及影响因素[J]. 水土保持通报, 2022, 42(6): 378-386. |
[Fan Wanqing, Wu Hua, Fan Fenglei. Spatial-temporal variation of net primary productivity and its influencing factors in Tibet over past 20 years[J]. Bulletin of Soil and Water Conservation, 2022, 42(6): 378-386.] | |
[8] | 李飞, 赵军, 赵传燕, 等. 中国西北干旱区潜在植被模拟与动态变化分析[J]. 草业学报, 2011, 20(4): 42-50. |
[Li Fei, Zhao Jun, Zhao Chuanyan, et al. Simulating and analyzing dynamic changes of potential vegetation in arid areas of Northwest China[J]. Acta Prataculturae Sinica, 2011, 20(4): 42-50.] | |
[9] | 周广胜, 王玉辉. 全球变化与气候-植被分类研究和展望[J]. 科学通报, 1999, 44(24): 2587-2593. |
[Zhou Guangsheng, Wang Yuhui. Global change and climate-vegetation classification research and perspectives[J]. Chinese Science Bulletin, 1999, 44(24): 2587-2593.] | |
[10] | 王景升, 张宪洲, 赵玉萍, 等. 藏北羌塘高原气候变化的时空格局[J]. 资源科学, 2008, 30(12): 1852-1859. |
[Wang Jingsheng, Zhang Xianzhou, Zhao Yuping, et al. Spatio-temporal pattern of climate changes in northern Tibet’s Qiangtang Plateau[J]. Resources Science, 2008, 30(12): 1852-1859.] | |
[11] | 薛梅, 陈芸芝, 闫敏, 等. 中国东北地区植被NPP模拟与时空变化分析[J]. 福州大学学报(自然科学版), 2018, 46(6): 821-830. |
[Xue Mei, Chen Yunzhi, Yan Min, et al. Simulation and spatio-temporal variation analysis of net primary productivity in Northeast China[J]. Journal of Fuzhou University (Natural Science Edition), 2018, 46(6): 821-830.] | |
[12] | 孔春芳, 岳永财, 徐凯. 2000—2015年江汉平原区域植被NPP时空特征及其对气候变化的响应[J]. 长江流域资源与环境, 2019, 28(6): 1460-1469. |
[Kong Chunfang, Yue Yongcai, Xu Kai. Spatial-temporal variation of vegetation net primary productivity and its response to climate change in Jianghan Plain from 2000 to 2015[J]. Resources and Environment in the Yangtze Basin, 2019, 28(6): 1460-1469.] | |
[13] | 朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力[J]. 植物生态学报, 2001, 25(5): 603-608. |
[Piao Shilong, Fang Jingyun, Guo Qinghua. Application of CASA model to the estimation of Chinese terrestrial net primary productivity[J]. Acta Phytoecologica Sinica, 2001, 25(5): 603-608.] | |
[14] | 赵晓, 周文佐, 田罗, 等. 土地利用变化对三峡库区重庆段植被净初级生产力的影响[J]. 生态学报, 2018, 38(21): 7658-7668. |
[Zhao Xiao, Zhou Wenzuo, Tian Luo, et al. Effects of land-use changes on vegetation net primary productivity in the Three Gorges Reservoir Area of Chongqing[J]. Acta Ecologica Sinica, 2018, 38(21): 7658-7668.] | |
[15] | 彭月月, 魏妍冰, 李启权, 等. 气候和土地利用变化对成都市植被NPP时空分布的影响[J]. 西南大学学报(自然科学版), 2018, 40(11): 150-159. |
[Peng Yueyue, Wei Yanbing, Li Qiquan, et al. The effects of changes in climate and land use on the spatio temporal distribution of vegetation NPP in Chengdu[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(11): 150-159.] | |
[16] | 蔡小青, 刘凤. 三江源区植被生产力时空格局及其变化特征[J]. 灌溉排水学报, 2021, 40(Suppl.): 56-59, 62. |
[Cai Xiaoqing, Liu Feng. Spatiotemporal pattern and change characteristics of vegetation productivity in the Three River Headwaters[J]. Journal of Irrigation and Drainage, 2021, 40(Suppl.): 56-59, 62.] | |
[17] |
Li J, Cui Y P, Liu J Y, et al. Estimation and analysis of net primary productivity by integrating MODIS remote sensing data with a light use efficiency model[J]. Ecological Modelling, 2013, 252: 3-10.
doi: 10.1016/j.ecolmodel.2012.11.026 |
[18] |
Zhao L, Yang C H, Zhao Y C, et al. Spatial correlations of land use carbon emissions in Shandong peninsula urban agglomeration: A perspective from city level using remote sensing data[J]. Remote Sensing, 2023, 15(6): 1488.
doi: 10.3390/rs15061488 |
[19] | 鲁晖, 董敬儒, 贺思嘉, 等. 2000—2017年河西地区山地-绿洲- 荒漠系统植被变化趋势与可持续性分析[J]. 兰州大学学报(自然科学版), 2021, 57(1): 99-108. |
[Lu Hui, Dong Jingru, He Sijia, et al. Vegetation change trend and persistence analysis of the mountain-oasis-desert system in Hexi Region from 2000 to 2017[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(1): 99-108.] | |
[20] | 窦睿音, 延军平, 王鹏涛. 全球变化背景下甘肃近半个世纪气温时空变化特征[J]. 干旱区研究, 2015, 32(1): 73-79. |
[Dou Ruiyin, Yan Junping, Wang Pengtao. Spatiotemporal distribution of temperature in Gansu province under global climate change during the period from 1956 to 2012[J]. Arid Zone Research, 2015, 32(1): 73-79.] | |
[21] | 王旭阳, 常跟应. 1998—2018年河西走廊农业生产地区专业化时空演变分析[J]. 兰州大学学报(自然科学版), 2022, 58(2): 186-194. |
[Wang Xuyang, Chang Genying. Analysis of the spatio-temporal evolution of regional specialization of agriculture in the Hexi Corridor between 1998 and 2018[J]. Journal of Lanzhou University (Natural Sciences), 2022, 58(2): 186-194.] | |
[22] | 戴尔阜, 方创琳. 甘肃河西地区生态问题与生态环境建设[J]. 干旱区资源与环境, 2002, 16(2): 1-5. |
[Dai Erfu, Fang Chuanglin. Ecological problems and eco-environment construction in Hexi corridor Gansu Province[J]. Journal of Arid Land Resources and Environment, 2002, 16(2): 1-5.] | |
[23] |
高振荣, 田庆明, 刘晓云, 等. 近58年河西走廊地区气温变化及突变分析[J]. 干旱区研究, 2010, 27(2): 194-203.
doi: 10.3724/SP.J.1148.2010.00194 |
[Gao Zhenrong, Tian Qingming, Liu Xiaoyun, et al. Characteristics and abrupt change of temperature in the Hexi corridor in recent 58 years[J]. Arid Zone Research, 2010, 27(2): 194-203.]
doi: 10.3724/SP.J.1148.2010.00194 |
|
[24] | 谭淼, 周启刚. 2000—2015年典型山地区域净初级生产力时空分布特征[J]. 水土保持研究, 2019, 26(6): 339-346. |
[Tan Miao, Zhou Qigang. Characteristics of spatial and temporal distribution of net primary productivity in Typical Mountain regions from 2000 to 2015[J]. Research of Soil and Water Conservation, 2019, 26(6): 339-346.] | |
[25] |
Gabriel O, Paula P, Daniela F, et al. Remotely sensed primary productivity shows that domestic and native herbivores combined are overgrazing Patagonia[J]. Journal of Applied Ecology, 2019, 56(7): 1575-1584.
doi: 10.1111/1365-2664.13408 |
[26] |
李登科, 王钊. 基于MOD17A3的中国陆地植被NPP变化特征分析[J]. 生态环境学报, 2018, 27(3): 397-405.
doi: 10.16258/j.cnki.1674-5906.2018.03.001 |
[Li Dengke, Wang Zhao. The characteristics of NPP of terrestrial vegetation in China based on MOD17A3 data[J]. Ecology and Environmental Sciences, 2018, 27(3): 397-405.]
doi: 10.16258/j.cnki.1674-5906.2018.03.001 |
|
[27] |
Wang X L, Bao Y H. Study on the methods of land use dynamic change research[J]. Progress in Geography, 1999, 18(1): 81-87.
doi: 10.11820/dlkxjz.1999.01.012 |
[28] | Hicke J A, Lobell D B, Asner G P. Cropland area and net primary production computed from 30 years of USDA agricultural harvest data[J]. Earth Interactions, 2004, 8(10): 1-20. |
[29] |
Fu Y C, Lu X Y, Zhao Y, et al. Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): A case study in Guangzhou, China[J]. Remote Sensing, 2013, 5(8): 4125-4144.
doi: 10.3390/rs5084125 |
[30] | Yue S, Wang C Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water Resources Research, 2002, 38(6): 1068. |
[31] | Aditya F, Gusmayanti E, Sudrajat J. Rainfall trend analysis using Mann-Kendall and Sen’s slope estimator test in west Kalimantan[J]. IOP Conference Series: Earth and Environmental Science, 2021, 893(1): 9. |
[32] | 肖桐, 刘纪远, 邵全琴. 近20年青海三江源自然保护区植被生产力变化模拟[J]. 地球信息科学学报, 2009, 11(5): 5557-5565. |
[Xiao Tong, Liu Jiyuan, Shao Quanqin. A simulation on changes in vegetation productivity in “Three River Sources” Nature Reserve, Qinghai province over past 20 years[J]. Journal of Geo-information Science, 2009, 11(5): 5557-5565.] | |
[33] |
Shi S H, Zhu L P, Luo Z H, et al. Quantitative analysis of the contributions of climatic and anthropogenic factors to the variation in net primary productivity, China[J]. Remote Sensing, 2023, 15(3): 789.
doi: 10.3390/rs15030789 |
[34] |
Huang Q, Zhang F Y, Zhang Q, et al. Assessing the effects of human activities on terrestrial net primary productivity of grasslands in typical ecologically fragile areas[J]. Biology, 2022, 12(1): 38.
doi: 10.3390/biology12010038 |
[35] |
Yang Y S, Fan X M, Wang X, et al. Net primary productivity changes associated with landslides induced by the 2008 Wenchuan Earthquake[J]. Land Degradation & Development, 2022, 34(4): 1035-1050.
doi: 10.1002/ldr.v34.4 |
[36] |
王凌阁, 朱睿, 陈泽霞, 等. 甘肃河西地区2000—2019年水土资源耦合协调特征[J]. 中国沙漠, 2022, 42(2): 44-53.
doi: 10.7522/j.issn.1000-694X.2021.00108 |
[Wang Lingge, Zhu Rui, Chen Zhexia, et al. Coupling effect of water-soil resources in Hexi area of Gansu, China in 2000-2019[J]. Journal of Desert Research, 2022, 42(2): 44-53.]
doi: 10.7522/j.issn.1000-694X.2021.00108 |
|
[37] | 刘春雨, 董晓峰, 刘英英, 等. 甘肃省季节性净初级生产力变化特征[J]. 遥感信息, 2017, 32(5): 102-110. |
[Liu Chunyu, Dong Xiaofeng, Liu Yingying, et al. Variation characteristics of seasonal net primary productivity in Gansu province[J]. Remote Sensing Information, 2017, 32(5): 102-110.] | |
[38] | Peng D L, Huang J F, Huete Alfredo R, et al. Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data[J]. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2010, 11(4): 275-285. |
[39] |
Matsushita B, Tamura M. Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in east Asia[J]. Remote Sensing of Environment, 2002, 81(1): 58-66.
doi: 10.1016/S0034-4257(01)00331-5 |
[40] | 王莉雯, 卫亚星, 牛铮. 净初级生产力遥感估算模型空间尺度转换[J]. 遥感学报, 2010, 14(6): 1074-1089. |
[Wang Liwen, Wei Yaxing, Niu Zheng. Spatial scaling of net primary productivity model based on remote sensing[J]. Journal of Remote Sensing, 2010, 14(6): 1074-1089.] | |
[41] |
Jiang T, Wang X L, Afzal M M, et al. Vegetation productivity and precipitation use efficiency across the Yellow River Basin: Spatial patterns and controls[J]. Remote Sensing, 2022, 14(20): 5074.
doi: 10.3390/rs14205074 |
[42] |
Zhao L, Chen Y Q, Wang X Y, et al. Spatiotemporal changes in net primary productivity before and after the development of unused land in the hilly areas of Hebei, China[J]. PloS One, 2022, 17(6): e0270010.
doi: 10.1371/journal.pone.0270010 |
[43] | 李婷婷, 马超, 郭增长. 2004—2015年贺兰山自然保护区植被NPP时空变化与气候响应[J]. 水土保持研究, 2020, 27(6): 254-261. |
[Li Tingting, Ma Chao, Guo Zengzhang. Response of spatiotemporal change of NPP to climate in Helanshan Mountain Nature Reserve from 2004 to 2015[J]. Research of Soil and Water Conservation, 2020, 27(6): 254-261.] |
[1] | 张彬, 郑新军, 王玉刚, 唐立松, 李彦, 杜澜, 田胜川. 1990—2022年天山北坡地区不同开垦年限耕层土壤盐分变化[J]. 干旱区研究, 2024, 41(9): 1435-1445. |
[2] | 孙琳琳, 刘琼, 黄观, 陈勇航, 魏鑫, 郭玉琳, 张太西, 高天一, 许赟红. 新疆和周边“一带一路”地区不同云天条件下地表太阳辐射[J]. 干旱区研究, 2024, 41(9): 1480-1490. |
[3] | 张文睿, 孙栋元, 王亦可, 杨俊, 兰立军, 靳虎甲, 徐裕. 河西走廊水资源-生态环境-社会经济系统耦合关系及时空分异[J]. 干旱区研究, 2024, 41(9): 1527-1537. |
[4] | 郝潘潘, 刘志有. 新疆绿洲土地利用隐性形态与土地生态安全协调特征——以伊犁河谷为例[J]. 干旱区研究, 2024, 41(9): 1605-1614. |
[5] | 袁征, 张志高, 闫瑾, 刘嘉毅, 胡柱钰, 王赟, 蔡茂堂. 1960—2020年黄河流域不同等级降水时空特征[J]. 干旱区研究, 2024, 41(8): 1259-1271. |
[6] | 张群慧, 常亮, 顾小凡, 王倩, 马卯楠, 李小等, 段瑞, 犹香智. 1979—2020年柴达木盆地人体舒适度指数时空变化及趋势分析[J]. 干旱区研究, 2024, 41(8): 1300-1308. |
[7] | 吴思源, 郝利娜. 2001—2021年黄河流域植被覆盖变化及其驱动因素[J]. 干旱区研究, 2024, 41(8): 1373-1384. |
[8] | 高鹏程, 岳艳妮, 鄢继选, 王世杰, 别强. 甘南藏族自治州土地利用与生态风险时空演变及驱动因素[J]. 干旱区研究, 2024, 41(7): 1140-1152. |
[9] | 吴朝巧, 林菲, 牛俊杰, 耿甜伟. 山西中部城市群生态系统服务对土地利用格局变化的响应[J]. 干旱区研究, 2024, 41(7): 1153-1166. |
[10] | 李冰洁, 范志韬, 曲芷程, 姚顺予, 宿夏姝, 刘东伟, 王立新. 基于InVEST-PLUS模型的黄河流域内蒙古段生态系统碳储量评价及预测[J]. 干旱区研究, 2024, 41(7): 1217-1227. |
[11] | 张顺鑫, 吴子豪, 闫庆武, 李桂娥, 牟守国. 基于PLUS-InVEST模型的天山北坡生态系统碳储量时空变化与预测[J]. 干旱区研究, 2024, 41(7): 1228-1237. |
[12] | 杨锁华, 李丽, 马江德, 郭文霞. “三生空间”视角下陕西省1990—2020年土地利用转型及梯度效应[J]. 干旱区研究, 2024, 41(7): 1249-1258. |
[13] | 周建伟, 罗君, 马雪洋. 拉萨河流域土地利用与生态系统服务价值时空演变及驱动因素[J]. 干旱区研究, 2024, 41(6): 1021-1031. |
[14] | 董彭蓓, 任宗萍, 李鹏, 王凯博, 贺国凯, 王璞. 土地利用变化下宁夏生态系统服务权衡协同关系研究[J]. 干旱区研究, 2024, 41(6): 1032-1044. |
[15] | 姚小晨, 高凡, 韩方红, 何兵. 2000—2020年阿克苏河流域土地利用强度变化及其对蒸散发的影响[J]. 干旱区研究, 2024, 41(6): 951-963. |
|