干旱区研究 ›› 2023, Vol. 40 ›› Issue (7): 1085-1093.doi: 10.13866/j.azr.2023.07.06 cstr: 32277.14.j.azr.2023.07.06

• 水土资源 • 上一篇    下一篇

基于Priestley-Taylor方法的中亚干旱区实际蒸散特征及归因

赵卓怡1,2,3(),郝兴明1,3()   

  1. 1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,干旱区生态安全与可持续发展重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
    3.阿克苏绿洲农田生态系统国家野外科学观测研究站,新疆 阿克苏 843017
  • 收稿日期:2023-03-07 修回日期:2023-03-28 出版日期:2023-07-15 发布日期:2023-08-01
  • 作者简介:赵卓怡(1997-),男,硕士研究生,主要从事干旱区水文过程研究. E-mail: zhuoyi_zhao@163.com
  • 基金资助:
    中国科学院新疆生态与地理研究所自主部署项目(E050010801)

Actual evapotranspiration characteristics and attribution in arid Central Asia based on the Priestley-Taylor method

ZHAO Zhuoyi1,2,3(),HAO Xingming1,3()   

  1. 1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Akesu National Station of Observation and Research for Oasis Agro-ecosystem, Akesu 843017, Xinjiang, China
  • Received:2023-03-07 Revised:2023-03-28 Published:2023-07-15 Online:2023-08-01

摘要:

蒸散是水—能—碳循环之间的纽带,了解蒸散的动态过程及其驱动因素对中亚干旱区水资源稳定、生态环境安全及农业水资源管理等方面具有重要意义。本研究基于Priestley-Taylor方法,估算并分析了2000—2019年中亚干旱区蒸散的时空变化,采用Lindeman-Merenda-Gold方法定量评估了不同驱动因素对蒸散各组分的绝对贡献,并以各组分对蒸散变化的贡献加权,评估了各驱动因素对蒸散的贡献。结果表明:中亚干旱区蒸散整体以1.45 mm·a-1的速度波动上升,其变化趋势呈“东升西降”的空间分布;植被蒸腾、蒸发、冠层截留蒸发的变化趋势分别是2.46 mm·a-1、-1.03 mm·a-1、0.02 mm·a-1,三者对蒸散变化的贡献分别是70.09%、29.34%、0.57%;植被蒸腾和冠层截留蒸发的主导因素是NDVI,蒸发的主导因素是气温;总体上,NDVI是中亚干旱区蒸散变化的主导因素,其绝对贡献为28.16%。

关键词: 蒸散, 时空变化, 归因, 贡献, 中亚, 干旱区

Abstract:

Understanding the dynamic process of evapotranspiration and its causes is crucial for water resource stability, ecological and environmental security, and agricultural water resource management in arid Central Asia. Evapotranspiration is the connection between the water-energy-carbon cycle. This study used the Priestley-Taylor diurnal land surface temperature range (PT-DTsR) model to calculate and analyze the spatial and temporal variability of evapotranspiration in arid Central Asia from 2000 to 2019. It also used the Lindeman-Merenda-Gold method to quantitatively evaluate the absolute contributions of various drivers to each component of evapotranspiration. By weighing each component’s contribution to the change in evapotranspiration, the contribution of each driver to evapotranspiration was assessed. According to the findings, evapotranspiration increased in dry Central Asia at a rate of 1.45 mm per year, and its pattern indicates that it increased in the east and decreased in the west. The changes in transpiration, evaporation, and interception were 2.46 mm·a-1, -1.03 mm·a-1, and 0.02 mm·a-1, respectively. These three trends contributed 70.09%, 29.34%, and 0.57%, to the change in evapotranspiration. With an absolute contribution of 28.16%, Normalized Difference Vegetation Index (NDVI) is the key driver of evapotranspiration fluctuations in arid Central Asia.

Key words: evapotranspiration, spatiotemporal variation, attribution, absolute contribution, Central Asia, arid zone