干旱区研究 ›› 2022, Vol. 39 ›› Issue (5): 1607-1617.doi: 10.13866/j.azr.2022.05.25 cstr: 32277.14.AZR.20220525
郭全恩1(),曹诗瑜1,南丽丽2,展宗冰3,王卓1,汪堃2,李景峰2
收稿日期:
2022-03-17
修回日期:
2022-06-23
出版日期:
2022-09-15
发布日期:
2022-10-25
作者简介:
郭全恩(1974-),男,博士,副研究员,主要从事污染土壤修复及盐渍化土壤改良研究. E-mail: 基金资助:
GUO Quanen1(),CAO Shiyu1,NAN Lili2,ZHAN Zongbing3,WANG Zhuo1,WANG Kun2,LI Jingfeng2
Received:
2022-03-17
Revised:
2022-06-23
Published:
2022-09-15
Online:
2022-10-25
摘要:
土壤中的微生物和酶活性是表征土壤质量的重要生物学性状。以甘肃省金昌市金川区宁远堡镇白家咀村冶炼厂附近下风向遭受重金属复合污染的农田土壤为研究对象,采用大田调查的方法对其0~20 cm和20~40 cm土层的重金属(Zn,Pb,Cd,Cr,Cu,Ni,As,Hg)、微生物(细菌、真菌、放线菌)和酶活性(脲酶、碱性磷酸酶、过氧化氢酶、脱氢酶)进行了调查分析。结果表明:(1) 土壤在0~20 cm土层,Ni、Cu和As点位超标率依次为15.4%、30.8%和38.5%;在20~40 cm土层,Ni、Cu和As点位超标率均为7.7%。(2) Pb、Hg、Ni、Cu、Cd、As与细菌、脲酶、碱性磷酸酶、过氧化氢酶、脱氢酶呈负相关关系;Cr与放线菌和真菌之间呈正相关关系;Zn与细菌生物量之间呈正相关关系;细菌与放线菌生物量之间呈负相关关系。(3) Pb、Zn和Cr为主导土壤生物学性状的主要因子,其贡献率依次为72.4%、16.2%和4.9%。在铜镍砷复合污染区,过氧化氢酶活性对重金属Cu、Ni、Cd、As较为敏感,可作为该区土壤质量评价的有效指标。
郭全恩,曹诗瑜,南丽丽,展宗冰,王卓,汪堃,李景峰. 镍铜砷复合污染对土壤微生物和酶活性的影响[J]. 干旱区研究, 2022, 39(5): 1607-1617.
GUO Quanen,CAO Shiyu,NAN Lili,ZHAN Zongbing,WANG Zhuo,WANG Kun,LI Jingfeng. Effects of nickel, copper, and arsenic pollution on soil microorganism and enzyme activities[J]. Arid Zone Research, 2022, 39(5): 1607-1617.
表1
不同采样点微生物数量变化"
土层/cm | 分区 | 采样点 | 细菌/(103 cfu·g-1) | 放线菌/(103 cfu·g-1) | 真菌/(10 cfu·g-1) |
---|---|---|---|---|---|
0~20 | A | 1 | 125.47aC | 17.95D | 2.00aC |
2 | 92.74aF | 13.29aE | 1.33aD | ||
3 | 122.82aC | 24.50aC | 1.33aD | ||
4 | 140.64aB | 25.24aC | 1.33aD | ||
5 | 67.96aI | 25.98aC | 2.66aB | ||
平均 | 109.93 | 21.39 | 1.73 | ||
B | 6 | 75.38aH | 78.24aA | 3.32aA | |
7 | 213.24aA | 4.98aF | 1.99aC | ||
8 | 81.80aG | 14.58aE | 2.65aB | ||
平均 | 123.47 | 32.60 | 2.65 | ||
C | 9 | 109.76aE | 19.97aD | 1.32aD | |
10 | 127.93aC | 15.86aDE | 1.33aD | ||
11 | 80.96aG | 31.27aB | 2.64aB | ||
12 | 116.06aD | 13.29aE | 1.99aC | ||
13 | 95.19aF | 3.98aF | 2.00aC | ||
平均 | 105.98 | 16.87 | 1.86 | ||
20~40 | A | 1 | 92.74bA | 4.65bC | 0.66bB |
2 | 69.42bC | 3.33bC | 0.66bB | ||
3 | 70.09bC | 8.61bB | 0.66bB | ||
4 | 77.81bB | 4.66bC | 0.66bB | ||
5 | 65.70bD | 1.99bD | 1.33bA | ||
平均 | 75.15 | 4.65 | 0.79 | ||
B | 6 | 47.60bF | 25.31bA | 1.33bA | |
7 | 64.64bC | 4.97aC | 0.66bB | ||
8 | 53.56bE | 5.95bC | 0.66bB | ||
平均 | 55.27 | 12.08 | 0.88 | ||
C | 9 | 54.64bE | 4.67bC | 0.66bB | |
10 | 79.96bB | 1.99bD | 0.66bB | ||
11 | 57.97bE | 28.76bA | 1.33bA | ||
12 | 53.75bE | 1.32bD | 1.33bA | ||
13 | 54.88bE | 3.32bC | 1.33bA | ||
平均 | 60.24 | 8.01 | 1.06 |
表2
不同采样点土壤酶活性变化"
土层/cm | 分区 | 采样点 | 脲酶 /[mg·g-1·(24h)-1] | 碱性磷酸酶 /[mg·g-1·(24h)-1] | 过氧化氢酶 /[mg·g-1·(20min)-1] | 脱氢酶 /(µg·g-1) |
---|---|---|---|---|---|---|
0~20 | A | 1 | 0.084aB | 0.898aBC | 0.013aBCD | 0.175bD |
2 | 0.109aA | 0.916aB | 0.016aABC | 0.172bD | ||
3 | 0.119aA | 0.963aB | 0.014aABCD | 0.172bD | ||
4 | 0.117aA | 0.933aB | 0.010aD | 0.181bD | ||
5 | 0.079aB | 0.848aC | 0.012aCD | 0.179bD | ||
平均 | 0.102 | 0.912 | 0.013 | 0.176 | ||
B | 6 | 0.124aA | 1.060aA | 0.014aABCD | 0.231bB | |
7 | 0.079aB | 0.654aE | 0.012aCD | 0.175bD | ||
8 | 0.082aB | 1.002aA | 0.015aABCD | 0.210bC | ||
平均 | 0.095 | 0.905 | 0.014 | 0.205 | ||
C | 9 | 0.044aC | 0.540aF | 0.019aA | 0.185bD | |
10 | 0.132aA | 0.648aE | 0.016aABC | 0.283bA | ||
11 | 0.167aA | 0.873aC | 0.018aAB | 0.185bD | ||
12 | 0.101aAB | 0.583aF | 0.016aABC | 0.179bD | ||
13 | 0.095aB | 0.763aD | 0.012aCD | 0.186bD | ||
平均 | 0.108 | 0.681 | 0.016 | 0.210 | ||
20~40 | A | 1 | 0.085aB | 0.604bD | 0.013aBC | 0.188aC |
2 | 0.066bBC | 0.610bD | 0.013aBC | 0.174aC | ||
3 | 0.046bC | 0.620bD | 0.015aAB | 0.171aC | ||
4 | 0.091bB | 0.630bD | 0.015aAB | 0.193aC | ||
5 | 0.067bBC | 0.453bE | 0.018bA | 0.182aC | ||
平均 | 0.071 | 0.583 | 0.015 | 0.182 | ||
B | 6 | 0.092bB | 0.985bA | 0.014aBC | 0.241aBC | |
7 | 0.049bC | 0.617bD | 0.015aAB | 0.174aC | ||
8 | 0.084bBC | 0.875bB | 0.018aA | 0.321aA | ||
平均 | 0.075 | 0.826 | 0.016 | 0.245 | ||
C | 9 | 0.028bC | 0.503bE | 0.018aA | 0.315aA | |
10 | 0.011bC | 0.395bF | 0.013aBC | 0.262aAB | ||
11 | 0.124bA | 0.783bC | 0.013bBC | 0.176aC | ||
12 | 0.097bB | 0.548bE | 0.010aC | 0.221aBC | ||
13 | 0.080bB | 0.616bD | 0.012aBC | 0.279aAB | ||
平均 | 0.068 | 0.569 | 0.013 | 0.251 |
表3
土壤化学、生物性状及重金属含量之间的相关性分析"
pH | 有机质 | Cr | Ni | Cu | Zn | Cd | Pb | As | Hg | 细菌 | 放线菌 | 真菌 | 脲酶 | 碱性磷酸酶 | 脱氢 酶 | 过氧化氢酶 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||||||||
有机质 | -0.530** | 1 | |||||||||||||||
Cr | -0.016 | 0.328 | 1 | ||||||||||||||
Ni | -0.504** | 0.757** | -0.055 | 1 | |||||||||||||
Cu | -0.506** | 0.664** | -0.237 | 0.961** | 1 | ||||||||||||
Zn | -0.443* | 0.597** | 0.543** | 0.514** | 0.429* | 1 | |||||||||||
Cd | -0.583** | 0.711** | -0.047 | 0.924** | 0.949** | 0.564** | 1 | ||||||||||
Pb | -0.326 | 0.728** | 0.269 | 0.668** | 0.613** | 0.457* | 0.649** | 1 | |||||||||
As | -0.352 | 0.279 | -0.614** | 0.660** | 0.819** | 0.095 | 0.734** | 0.358 | 1 | ||||||||
Hg | -0.190 | 0.413* | -0.094 | 0.534** | 0.538** | 0.302 | 0.560** | 0.508** | 0.458* | 1 | |||||||
细菌 | -0.105 | 0.284 | -0.015 | 0.368 | 0.367 | 0.255 | 0.472* | 0.194 | 0.203 | 0.295 | 1 | ||||||
放线菌 | -0.264 | 0.642** | 0.208 | 0.352 | 0.290 | 0.070 | 0.299 | 0.767** | 0.133 | 0.359 | 0.020 | 1 | |||||
真菌 | -0.250 | 0.491* | 0.052 | 0.302 | 0.306 | 0.075 | 0.319 | 0.545** | 0.181 | 0.354 | 0.226 | 0.669** | 1 | ||||
脲酶 | -0.343 | 0.473* | 0.148 | 0.198 | 0.154 | 0.254 | 0.253 | 0.290 | 0.104 | 0.325 | 0.186 | 0.521** | 0.510** | 1 | |||
碱性磷酸酶 | -0.372 | 0.617** | 0.522** | 0.145 | 0.072 | 0.350 | 0.230 | 0.424* | -0.146 | 0.228 | 0.074 | 0.662** | 0.569** | 0.615** | 1 | ||
脱氢酶 | 0.102 | -0.284 | -0.164 | -0.115 | 0.010 | -0.223 | -0.018 | -0.004 | 0.289 | -0.003 | -0.341 | -0.084 | -0.214 | -0.188 | -0.123 | 1 | |
过氧化氢酶 | -0.318 | 0.463* | -0.141 | 0.533** | 0.599** | 0.138 | 0.572** | 0.305 | 0.488* | 0.355 | 0.198 | 0.321 | 0.387 | 0.097 | 0.275 | 0.071 | 1 |
表5
不同采样区重金属含量"
土层/cm | 分区 | Cr /(mg·kg-1) | Ni /(mg·kg-1) | Cu /(mg·kg-1) | Zn /(mg·kg-1) | Cd /(mg·kg-1) | Pb /(mg·kg-1) | As /(mg·kg-1) | Hg /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|
0~20 | A | 117.9 | 174.0 | 171.7 | 95.3 | 0.45 | 30.5 | 16.7 | 0.069 |
B | 113.2 | 147.9 | 149.8 | 88.5 | 0.43 | 34.7 | 17.5 | 0.071 | |
C | 95.7 | 190.2 | 215.8 | 90.3 | 0.51 | 31.1 | 21.5 | 0.089 | |
20~40 | A | 116.6 | 122.4 | 99.0 | 86.7 | 0.31 | 26.6 | 14.8 | 0.046 |
B | 104.5 | 121.9 | 116.1 | 84.9 | 0.34 | 27.6 | 17.2 | 0.065 | |
C | 96.4 | 139.9 | 141.9 | 81.5 | 0.37 | 27.4 | 18.6 | 0.059 |
[1] | 杨宁, 李东海, 杨小波, 等. 铅锌矿区周边土壤重金属污染及植物富集特征[J]. 热带生物学报, 2021, 12(4): 1-8. |
[Yang Ning, Li Donghai, Yang Xiaobo, et al. Heavy metal contamination in the soil and enrichment characteristics in the plants around the abandoned lead-zinc mine[J]. Journal of Tropical Biology, 2021, 12(4): 1-8. ] | |
[2] | 王若锦, 邵天杰, 卫佩茹. 环青海湖地区表层土壤重金属富集含量及其生态风险评价[J]. 干旱区研究, 2021, 38(2): 411-420. |
[Wang Ruojin, Shao Tianjie, Wei Peiru. Enrichment content and ecological risk assessment of heavy metal in surface soil around Qinghai Lake[J]. Arid Zone Research, 2021, 38(2): 411-420. ] | |
[3] |
Wei L, Wang K, Noguera D R, et al. Transformation and speciation of typical heavy metals in soil aquifer treatment system during long time recharging with secondary effluent: Depth distribution and combination[J]. Chemosphere, 2016, 165: 100-109.
doi: S0045-6535(16)31217-6 pmid: 27639465 |
[4] |
Guo Q E, Cao S Y, Nan L L, et al. Distribution characteristics and ecological risk assessment of heavy metals in typical farmland soils from Baijiazui Village of Ningyuanbu Town, China[J]. Polish Journal of Environmental Studies, 2022, 31(4): 3551-3560.
doi: 10.15244/pjoes/147056 |
[5] | 黄璜, 南忠仁, 胡小娜, 等. 金昌市城区土壤重金属空间分布及潜在生态危害评价[J]. 环境监测管理与技术, 2009, 21(5): 30-34. |
[Nan Zhongren, Hu Xiao’na, et al. Spatial distributions of heavy metals and assessment of potential ecological risk in Jinchang urban area[J]. Environmental Monitoring Management and Technology, 2009, 21(5): 30-34. ] | |
[6] | 丁海霞, 南忠仁, 刘晓文, 等. 金昌市郊农田土壤重金属的污染特征[J]. 农业环境科学学报, 2008, 27(6): 2183-2188. |
[Ding Haixia, Nan Zhongren, Liu Xiaowen, et al. Characteristics of selected heavy metal pollution in suburb cropland, Jinchang City, Gansu, China[J]. Journal of Agro-Environment Science, 2008, 27(6): 2183-2188. ] | |
[7] | 李媛, 南忠仁, 刘晓文, 等. 金昌市市郊农田土壤-小麦系统Cu、Zn、Ni 行为特性[J]. 西北农业学报, 2008, 17(6): 298-302. |
[Li Yuan, Nan Zhongren, Liu Xiaowen, et al. Behavior of heavy metals (Cu, Zn, Ni) in soil-wheat system of the suburb in Jinchang[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(6): 298-302. ] | |
[8] | 廖晓勇, 陈同斌, 武斌, 等. 典型矿业城市的土壤重金属分布特征与复合污染评价——以 “镍都” 金昌市为例[J]. 地理研究, 2006, 25(5): 843-852. |
[Liao Xiaoyong, Chen Tongbin, Wu Bin, et al. Mining urban soil pollution: Concentrations and patterns of heavy metals in the soils of Jinchang, China[J]. Geographical Research, 2006, 25(5): 843-852. ] | |
[9] | 徐琪, 龚甲桂, 赵胜军, 等. 金昌市金川区土壤重金属累积分析及污染评价[J]. 干旱区资源与环境, 2019, 33(11): 150-155. |
[Xu Qi, Gong Jiagui, Zhao Shenjun, et al. Heavy metal accumulation and pollution evaluation in Jinchuan district, Jinchang City[J]. Journal of Arid Land Resources and Environment, 2019, 33(11): 150-155. ] | |
[10] |
Cheng L, Zhang N F, Yuan M T, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities[J]. The ISME Journal, 2017, 11(8): 1825-1835.
doi: 10.1038/ismej.2017.48 |
[11] | 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008, 45(5): 892-900. |
[Lin Xiangui, Hu Junli. Scientific connotation and ecological service function[J]. Acta Pedologica Sinica, 2008, 45(5): 892-900. ] | |
[12] |
Xiao L, Liu G B, Li P, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess Plateau, China[J]. Soil and Tillage Research, 2020, 200: doi: 10.1016/j.still.2020.104605.
doi: 10.1016/j.still.2020.104605 |
[13] |
Guo Q E, Nan L L, Cao S Y. Evaluation of soil enzyme activities as soil biological activity indicators in desert-oasis transition zone soils in China[J]. Arid Land Research and Management, 2021, 35(2): 162-176.
doi: 10.1080/15324982.2020.1824200 |
[14] |
Zhang J Y, Ai Z, Liang C, et al. How microbes cope with short-term N addition in a Pinus tabuliformis forest-ecological stoichiometry[J]. Geoderma, 2019, 337: 630-640.
doi: 10.1016/j.geoderma.2018.10.017 |
[15] |
Bell C, Carrillo Y, Boot C M, et al. Rhizosphere stoichiometry: are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level[J]. New Phytologist, 2013, 201(2): 505-517.
doi: 10.1111/nph.12531 |
[16] | 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学: 生命科学, 2021, 51(1): 1-11. |
[Zhu Yongguan, Pen Jingjing, Wei Zhong, et al. Linking the soil microbiome to soil health[J]. Scientia Sinica Vitae, 2021, 51(1): 1-11. ] | |
[17] | 贺玉晓, 赵同谦, 刘刚才, 等. 采煤沉陷区土壤重金属含量对土壤酶活性的影响[J]. 水土保持学报, 2012, 26(1): 214-218. |
[He Yuxiao, Zhao Tongqian, Liu Gangcai, et al. Influence of heavy metal contents on the activities of soil enzyme in coalmining subsided area[J]. Journal of Soil and Water Conservation, 2012, 26(1): 214-218. ] | |
[18] | 张涪平, 曹凑贵, 李苹, 等. 藏中矿区重金属污染对土壤微生物学特性的影响[J]. 农业环境科学学报, 2010, 29(4): 698-704. |
[Zhang Fuping, Cao Zougui, Li Ping, et al. Effects of heavy metal pollution on microbial characteristics of mine soils in central Tibet[J]. Journal of Agro-Environment Science, 2010, 29(4): 698-704. ] | |
[19] | 闫文德, 田大伦. 湘潭锰矿废弃地土壤酶活性与重金属含量的关系[J]. 中南林学院学报, 2006, 26(3): 1-4. |
[Yan Wende, Tian Dalun. Relationship between enzyme activities and heavy metal contents in soils of deserted land in Xiangtan manganese mine[J]. Journal of Central South Forestry University, 2006, 26(3): 1-4. ] | |
[20] |
杨丽原, 沈吉, 张祖陆, 等. 南四湖表层底泥重金属污染及其风险性评价[J]. 湖泊科学, 2003, 15(3): 252-256.
doi: 10.18307/2003.0309 |
[Yang Liyuan, Shen Ji, Zhang Zulu, et al. Distribution and ecological risk assessment for heavy metals in superficial sediments of Nansihu Lake[J]. Journal of Lake Sciences, 2003, 15(3): 252-256. ]
doi: 10.18307/2003.0309 |
|
[21] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1987. |
[Guan Songmeng. Soil Enzyme and Its Research Method[M]. Beijing: Agricultural Press, 1987. ] | |
[22] | 杨兰芳, 曾巧, 李海波, 等. 紫外分光光度法测定土壤过氧化氢酶活性[J]. 土壤通报, 2011, 42(1): 207-210. |
[Yang Lanfang, Zeng Qiao, Li Haibo, et al. Measurement of catalase activity in soil by ultraviolet spectrophotometry[J]. Chinese Journal of Soil Science, 2011, 42(1): 207-210. ] | |
[23] | 许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京: 农业出版社, 1986: 91-110. |
[Xu Guanghui, Zheng Hongyuan. Handbook of Soil Microbial Analysis Methods[M]. Beijing: Agricultural Press, 1986: 91-110. ] | |
[24] | 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985: 240-273. |
[Laboratory of Microbiology, Institute of Soil, Chinese Academy of Sciences. Soil Microbial Research Method[M]. Beijing: Science Press, 1985: 240-273. ] | |
[25] | 南丽丽, 师尚礼, 郁继华. 荒漠灌区不同种植年限苜蓿草地土壤微生物特性[J]. 草地学报, 2016, 24(5): 975-980. |
[Nan Lili, Shi Shangli, Yu Jihua. Soil microbial properties in Alfalfa field with different growing years in arid desert oasis[J]. Acta Agrestia Sinica, 2016, 24(5): 975-980. ] | |
[26] | GB15618-2018, 中华人民共和国国家标准: 土壤环境质量农用地土壤污染风险管控标准(试行) [S]. 北京: 中国环境科学出版社, 2018. |
[GB15618-2018, National Standard of the People’s Republic of China: Soil Environmental Quality Standard for Soil Pollution Risk Control of Agricultural Land (Trial)[S]. Beijing: China Environmental Science Press, 2018. ] | |
[27] | 刘娟, 张乃明, 于泓, 等. 重金属污染对水稻土微生物及酶活性影响研究进展[J]. 土壤, 2021, 53(6): 1152-1159. |
[Liu Juan, Zhang Naiming, Yu Hong, et al. Effects of heavy metal pollution on microorganism and enzyme activity in paddy soil: A review[J]. Soils, 2021, 53(6): 1152-1159. ] | |
[28] |
Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216-234.
doi: 10.1016/j.soilbio.2012.11.009 |
[29] | 孙波, 赵其国, 张桃林, 等. 土壤质量与持续环境——Ⅲ. 土壤质量评价的生物学指标[J]. 土壤, 1997, 29(5): 225-234. |
[Sun Bo, Zhao Qiguo, Zhang Taolin, et al. Soil quality and sustainable environment——Ⅲ. Biological indexes of soil quality evaluation[J]. Soils, 1997, 29(5): 225-234. ] | |
[30] | 王秀丽, 徐建民, 姚槐应, 等. 重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响[J]. 环境科学学报, 2003, 23(1): 22-27. |
[Wang Xiuli, Xu Jianming, Yao Huaiying, et al. Effects of Cu, Zn, Cd and Pb compound contamination on soil microbial community[J]. Acta Scientiae Circumstantiae, 2003, 23(1): 22-27. ] | |
[31] |
Gao Y, Zhou P, Mao L, et al. Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: Modified ecological dose-response model and PCR-RAPD[J]. Environmental Earth Science, 2010, 60(3): 603 -612.
doi: 10.1007/s12665-009-0200-8 |
[32] | 吴春艳, 陈义, 闵航, 等. Cd2+和Cu2+对水稻土微生物及酶活性的影响[J]. 浙江农业科学, 2006, 47(3): 303-307. |
[Wu Chunyan, Chen Yi, Min Hang, et al. Effects of Cd2+and Cu2+ on paddy soil microbial biomass and enzyme activities[J]. Zhejiang Agricultural Science, 2006, 47(3): 303-307. ] | |
[33] |
Pan J, Yu L. Effects of Cd or/and Pb on soil enzyme activities and microbial community structure[J]. Ecological Engineering, 2011, 37(11): 1889-1894.
doi: 10.1016/j.ecoleng.2011.07.002 |
[34] | Zhang C, Nie S, Liang J, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J]. Science of the Total Environment, 2016, 557: 785-790. |
[35] |
Morton-Bermea O, Hernández-Álvarez E, González-Hernández G, et al. Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City[J]. Journal of Geochemical Exploration, 2009, 101(3): 218-224.
doi: 10.1016/j.gexplo.2008.07.002 |
[36] | 陈任连, 蔡茜茜, 周丽华, 等. 甘肃某冶炼厂区土壤重金属铅、镉污染特征及其对微生物群落结构的影响[J]. 生态环境学报, 2021, 30(3): 596-603. |
[Chen Renlian, Cai Xixi, Zhou Lihua, et al. Characteristics of soil contamination with heavy metals (Pb and Cd ) in a smelting plant of Gansu and their effects on microbial community structure[J]. Ecology and Environmental Sciences, 2021, 30(3): 596-603. ] | |
[37] |
Aponte H N, Medina J, Butler B, et al. Soil quality indices for metal (loid) contamination: An enzymatic perspective[J]. Land Degradation & Development, 2020, 31(17): 2700-2719.
doi: 10.1002/ldr.3630 |
[38] | 周启星, 王美娥. 土壤生态毒理学研究进展与展望[J]. 生态毒理学报, 2006, 1(1): 1-11. |
[Zhou Qixing, Wang Mei’e. Researching advancement and prospect of soil ecotoxicology[J]. Asian Journal of Ecotoxicology, 2006, 1(1): 1-11. ] | |
[39] |
Tian H X, Kong L, Megharaj M, et al. Contribution of attendant anions on cadmium toxicity to soil enzymes[J]. Chemosphere, 2017, 187: 19-26.
doi: S0045-6535(17)31297-3 pmid: 28829948 |
[40] |
Fan D W, Wang S Y, Guo Y H, et al. The role of bacterial communities in shaping Cd-induced hormesis in ‘living’ soil as a function of land-use change[J]. Journal of Hazardous Materials, 2021, 409, doi: 10.1016/j.jhazmat.2020.124996.
doi: 10.1016/j.jhazmat.2020.124996 |
[41] | 谭向平, 何金红, 郭志明, 等. 土壤酶对重金属污染的响应及指示研究进展[J/OL]. 土壤学报, 2022, https://kns.cnki.net/kcms/detail/32.1119.P.20211126.1624.010.html. |
[Tan Xiangping, He Jinghong, Guo Zhiming, et al. Research progresses on soil enzymes as indicators of soil health and their responses to heavy metal pollution[J/OL]. Acta Pedologica Sinica, https://kns.cnki.net/kcms/detail/32.1119.P.20211126.1624.010.html. ] | |
[42] |
Gerhard W, Gerhard W B. Microbial toxicity of Cd and Hg in different soils related to total and water-soluble contents[J]. Ecotoxicology and Environmental Safety, 1997, 38(3): 200-204.
pmid: 9469869 |
[43] | Tan X P, Kong L, Yan H R, et al. Influence of soil factors on the soil enzyme inhibition by Cd[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2014, 64(8): 666-674. |
[44] | 和文祥, 朱铭莪, 张一平. 土壤酶与重金属关系的研究现状[J]. 土壤与环境, 2000, 9(2): 139-142. |
[He Wenxiang, Zhu Ming’e, Zhang Yiping. Research status of the relationship between soil enzymes and heavy metals[J]. Soil and Environment, 2000, 9(2): 139-142. ] | |
[45] | 朱铭莪. 土壤酶动力学及力学[M]. 北京: 科学出版社, 2011. |
[Zhu Ming’e. Soil Enzyme Kinetics and Mechanics[M]. Beijing: Science Press, 2011 ] | |
[46] |
Megharaj K V, Naidu N S. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review[J]. Advances in Environmental Research, 2003, 8(1): 121-135.
doi: 10.1016/S1093-0191(02)00135-1 |
[47] | 王盼盼, 郭海峰, 许江环, 等. 湛江沿海盐渍田土壤-稻米系统重金属含量与土壤酶活性的特征及其相关分析[J]. 生态环境学报, 2021, 30(4): 857-865. |
[Wang Panpan, Guo Haifeng, Xu Jianghuan, et al. Characteristics and correlation analysis of heavy metal content and soil enzyme activity in soil-rice system of Zhanjiang coastal salinized farmland[J]. Ecology and Environmental Sciences, 2021, 30(4): 857-865. ] |
[1] | 张彬, 郑新军, 王玉刚, 唐立松, 李彦, 杜澜, 田胜川. 1990—2022年天山北坡地区不同开垦年限耕层土壤盐分变化[J]. 干旱区研究, 2024, 41(9): 1435-1445. |
[2] | 邱春霞, 刘晓宏, 李豆, 张佳淼, 李朋飞. 机载LiDAR和模糊推理系统在黄土高原土壤侵蚀监测中的应用[J]. 干旱区研究, 2024, 41(8): 1331-1342. |
[3] | 万佳怡, 矢佳昱, 张华敏, 李兰晖, 丁明军. 三江源区不同覆被类型高寒草甸土壤水分变化特征[J]. 干旱区研究, 2024, 41(8): 1343-1353. |
[4] | 董鹏, 任悦, 高广磊, 丁国栋, 张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征[J]. 干旱区研究, 2024, 41(8): 1354-1363. |
[5] | 张培豪, 邢光延, 赵吉美, 刘昌义, 胡夏嵩. 轻度放牧和禁牧草地土壤物理力学性质特征——以夏藏滩滑坡区为例[J]. 干旱区研究, 2024, 41(8): 1364-1372. |
[6] | 龙威夷, 施建飞, 李双媛, 孙金金, 王玉刚. 流域绿洲土壤盐分多模型反演效果评估[J]. 干旱区研究, 2024, 41(7): 1120-1130. |
[7] | 郑柳娜, 江红南, 孙梦婷. 基于遥感影像的新疆渭干河—库车河三角洲土壤水盐与植被覆盖度的关系[J]. 干旱区研究, 2024, 41(7): 1131-1139. |
[8] | 崔国龙, 李强峰, 高英, 刘维军, 张梅. 青海大通北川河源区典型植被土壤微生物群落结构特征及影响因素[J]. 干旱区研究, 2024, 41(7): 1195-1206. |
[9] | 唐维春, 刘小娥, 苏世平, 田晓娟, 唐庆童, 张婧. 甘肃兴隆山不同演替阶段群落土壤氮素矿化对温度的响应[J]. 干旱区研究, 2024, 41(6): 984-997. |
[10] | 毛光锐, 赵锦梅, 朱恭, 崔海明, 刘万智. 黄土高原高速公路边坡草本群落植被特征及其与土壤的关系[J]. 干旱区研究, 2024, 41(5): 788-796. |
[11] | 雷菲亚, 李小双, 陶冶, 尹本丰, 荣晓莹, 张静, 陆永兴, 郭星, 周晓兵, 张元明. 西北干旱区藓类结皮覆盖下土壤多功能性特征及影响因子[J]. 干旱区研究, 2024, 41(5): 812-820. |
[12] | 杨竹青, 王磊, 张雪, 申建香, 张伊婧, 李欣宇, 张波, 牛金帅. 典型固沙植物种子萌发和幼苗生长对土壤水分的响应[J]. 干旱区研究, 2024, 41(5): 830-842. |
[13] | 洪国军, 谢俊博, 张灵, 范振岐, 喻彩丽, 付仙兵, 李旭. 基于多光谱影像的阿拉尔垦区棉田土壤盐分反演[J]. 干旱区研究, 2024, 41(5): 894-904. |
[14] | 胡广录, 刘鹏, 李嘉楠, 陶虎, 周成乾. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565. |
[15] | 张华, 押海廷, 徐存刚. 兰州市南北两山土壤水分遥感反演及植被需水量估算[J]. 干旱区研究, 2024, 41(4): 566-580. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 225
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 241
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|