[1] |
Bowen G J, Cai Z, Fiorella R P, et al. Isotopes in the water cycle: regional-to global-scale patterns and applications[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 453-479.
doi: 10.1146/annurev-earth-053018-060220
|
[2] |
Zhang M J, Wang S J. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J]. Journal of Geographical Sciences, 2016, 26(7): 921-938.
doi: 10.1007/s11442-016-1307-y
|
[3] |
Sprenger M, Tetzlaff D, Soulsby C. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone[J]. Hydrology and Earth System Sciences, 2017, 21(7): 3839-3858.
doi: 10.5194/hess-21-3839-2017
|
[4] |
Galewsky J, Steen-Larsen H C, Field R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 2016, 54(4): 809-865.
doi: 10.1002/2015rg000512
pmid: 32661517
|
[5] |
Ehleringer J R, Barnette J E, Jameel Y, et al. Urban water: A new frontier in isotope hydrology[J]. Isotopes in Environmental and Health Studies, 2016, 52(4-5): 477-486.
doi: 10.1080/10256016.2016.1171217
pmid: 27142528
|
[6] |
Leslie D, Welch K, Lyons W B. Domestic water supply dynamics using stable isotopes δ18O, δD, and d-excess[J]. Journal of Water Resource and Protection, 2014, 6(16): 1517.
doi: 10.4236/jwarp.2014.616139
|
[7] |
Bowen G J, Ehleringer J R, Chesson L A, et al. Stable isotope ratios of tap water in the contiguous United States[J]. Water Resources Research, 2007, 43(3): W03419.
|
[8] |
West A G, February E C, Bowen G J. Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa[J]. Journal of Geochemical Exploration, 2014, 145: 213-222.
doi: 10.1016/j.gexplo.2014.06.009
|
[9] |
Zhao S H, Hu C H, Tian F Q, et al. Divergence of stable isotopes in tap water across China[J]. Scientific Reports, 2017, 7(1): 43653.
doi: 10.1038/srep43653
|
[10] |
De Wet R F, West A G, Harris C. Seasonal variation in tap water δ2H and δ18O isotopes reveals two tap water worlds[J]. Scientific Reports, 2020, 10(1): 13544.
doi: 10.1038/s41598-020-70317-2
|
[11] |
Nagode K, Kanduč T, Zuliani T, et al. Daily fluctuations in the isotope and elemental composition of tap water in Ljubljana, Slovenia[J]. Water, 2021, 13(11): 1451.
doi: 10.3390/w13111451
|
[12] |
Ammer S T M, Bartelink E J, Vollner J M, et al. Spatial distributions of oxygen stable isotope ratios in tap water from Mexico for region of origin predictions of unidentified border crossers[J]. Journal of Forensic Sciences, 2020, 65(4): 1049-1055.
doi: 10.1111/1556-4029.14283
|
[13] |
张兵, 李军, 曹佳蕊, 等. 生活水源的稳定氢氧同位素和水化学特征--以天津市为例[J]. 南水北调与水利科技, 2020, 18(6): 122-129.
|
|
[ Zhang Bing, Li Jun, Cao Jiarui, et al. Stable hydrogen and oxygen isotopes and hydrochemical characteristics of domestic water source: A case study of Tianjin[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(6): 122-129. ]
|
[14] |
Du M X, Zhang M J, Wang S J, et al. Stable isotope ratios in tap water of a riverside city in a semi-arid climate: An application to water source determination[J]. Water, 2019, 11(7): 1441.
doi: 10.3390/w11071441
|
[15] |
Good S P, Kennedy C D, Stalker J C, et al. Patterns of local and nonlocal water resource use across the western US determined via stable isotope intercomparisons[J]. Water Resources Research, 2014, 50(10): 8034-8049.
doi: 10.1002/2014WR015884
|
[16] |
Tipple B J, Jameel Y, Chau T H, et al. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area’s water system and adjustments during a major drought[J]. Water Research, 2017, 119: 212-224.
doi: S0043-1354(17)30288-9
pmid: 28463769
|
[17] |
Jameel Y, Brewer S, Good S P, et al. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area[J]. Water Resources Research, 2016, 52(8): 5891-5910.
doi: 10.1002/2016WR019104
|
[18] |
Wang S J, Zhang M J, Bowen G J, et al. Water source signatures in the spatial and seasonal isotope variation of Chinese tap waters[J]. Water Resources Research, 2018, 54(11): 9131-9143.
doi: 10.1029/2018WR023091
|
[19] |
Du M X, Zhang M J, Wang S J, et al. Stable isotope reveals tap water source under different water supply modes in the eastern margin of the Qinghai-Tibet Plateau[J]. Water, 2019, 11(12): 2578.
doi: 10.3390/w11122578
|
[20] |
Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
doi: 10.3402/tellusa.v16i4.8993
|
[21] |
Bowen G J, Wilkinson B H. Spatial distribution of δ18O in meteoric precipitation[J]. Geology, 2002, 30(4): 315-318.
doi: 10.1130/0091-7613(2002)030<0315:SDOOIM>2.0.CO;2
|
[22] |
Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
pmid: 17814749
|
[23] |
Liu J R, Song X F, Yuan G F, et al. Stable isotopic compositions of precipitation in China[J]. Tellus B: Chemical and Physical Meteorology, 2014, 66(1): 22567.
doi: 10.3402/tellusb.v66.22567
|
[24] |
李小飞, 张明军, 李亚举, 等. 西北干旱区降水中δ18O变化特征及其水汽输送[J]. 环境科学, 2012, 33(3): 711-719.
|
|
[ Li Xiaofei, Zhang Mingjun, Li Yaju, et al. Characteristics of δ18O in precipitation and moisture transports over the arid region in Northwest China[J]. Environmental Science, 2012, 33(3): 711-719. ]
|
[25] |
Wang S J, Zhang M J, Hughes C E, et al. Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, Central Asia[J]. Tellus B: Chemical and Physical Meteorology, 2016, 68(1): 26206.
doi: 10.3402/tellusb.v68.26206
|
[26] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002
|
|
[ Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26. ]
doi: 10.11821/dlxb201701002
|
[27] |
Sokratov S A, Golubev V N. Snow isotopic content change by sublimation[J]. Journal of Glaciology, 2009, 55(193): 823-828.
doi: 10.3189/002214309790152456
|
[28] |
Yao S B, Jiang D B, Zhang Z S. Lagrangian simulations of moisture sources for Chinese Xinjiang precipitation during 1979-2018[J]. International Journal of Climatology, 2021, 41(S1): E216-E232.
|
[29] |
Tan H B, Zhang Y, Rao W B, et al. Rapid groundwater circulation inferred from temporal water dynamics and isotopes in an arid system[J]. Hydrological Processes, 2021, 35(6): e14225.
|
[30] |
新疆维吾尔自治区统计局. 新疆统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
|
|
[ Statistics Bureau of Xinjiang Uygur Autonomous Region. Xinjiang Statistical Yearbook 2020[M]. Beijing: China Statistics Press, 2020. ]
|
[31] |
Lloyd C T, Sorichetta A, Tatem A J. High resolution global gridded data for use in population studies[J]. Scientific Data, 2017, 4(1): 1-17.
|
[32] |
曾帝, 吴锦奎, 李洪源, 等. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869.
|
|
[ Zeng Di, Wu Jinkui, Li Hongyuan, et al. Hydrogen and oxygen isotopes in precipitation in the arid regions of Northwest China: A review[J]. Arid Zone Research, 2020, 37(4): 857-869. ]
|