干旱区研究 ›› 2022, Vol. 39 ›› Issue (2): 584-593.doi: 10.13866/j.azr.2022.02.25
收稿日期:
2021-10-15
修回日期:
2021-11-15
出版日期:
2022-03-15
发布日期:
2022-03-30
通讯作者:
王晓峰
作者简介:
杨丹(1996-),女,硕士研究生,研究方向为生态遥感. E-mail: 基金资助:
YANG Dan1(),WANG Xiaofeng2,3()
Received:
2021-10-15
Revised:
2021-11-15
Online:
2022-03-15
Published:
2022-03-30
Contact:
Xiaofeng WANG
摘要:
本研究基于CASA模型获得黄土高原2000—2018年植被NPP数据集,通过相关性、残差分析等方法,定量分析了气候变化和人类活动对植被NPP变化的影响。结果表明:(1) 黄土高原2000—2018年植被NPP呈东南高、西北低分布格局,研究区约86.86%区域植被NPP呈增加趋势,主要为退耕还林还草的核心区;呈下降趋势的面积占13.14%,主要分布在西北部的干旱区。(2) 气候变化和人类活动对植被NPP变化的贡献率分别为48.78%和51.22%,在空间上有明显的差异性,人口稀少、发展相对落后地区的植被变化主要受气候变化的影响;人口众多、经济发展较好地区植被变化以人类活动为主。(3) 黄土高原作为干旱半干旱区植被对气候变化的响应较为敏感,随着人类活动的日益频繁,气候和人类活动共同作用于黄土高原的植被变化。本研究有助于理解气候变化和人类活动对植被动态变化的影响,并为黄土高原的植被恢复和高质量发展提供科学依据。
杨丹,王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593.
YANG Dan,WANG Xiaofeng. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 584-593.
[1] | 屈莹波, 赵媛媛, 丁国栋, 等. 气候变化和人类活动对锡林郭勒草原植被覆盖度的影响[J]. 干旱区研究, 2021, 38(3):802-811. |
[ Qu Yingbo, Zhao Yuanyuan, Ding Guodong, et al. Effects of climate and human activities on vegetation cover changes in Xilinguol steppe[J]. Arid Zone Research, 2021, 38(3):802-811. ] | |
[2] |
Kong D D, Zhang Q, Singh V P, et al. Seasonal vegetation response to climate change in the northern Hemisphere (1982-2013)[J]. Global and Planetary Change, 2017, 148:1-8.
doi: 10.1016/j.gloplacha.2016.10.020 |
[3] | 陈舒婷, 郭兵, 杨飞, 等. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J]. 自然资源学报, 2020, 35(10):2511-2527. |
[ Chen Shuting, Guo Bing, Yang Fei, et al. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015[J]. Journal of Natural Resources, 2020, 35(10):2511-2527. ] | |
[4] |
Jiao W, Chen Y N, Li W H, et al. Estimation of net primary productivity and its driving factors in the Ili River Valley, China[J]. Journal of Arid Land, 2018, 10(5):781-793.
doi: 10.1007/s40333-018-0022-1 |
[5] | 刘彩红, 王朋岭, 温婷婷, 余迪, 白文蓉. 1960—2019年黄河源区气候变化时空规律研究[J]. 干旱区研究, 2021, 38(2):293-302. |
[ Liu Caihong, Wang Pengling, Wen Tingting, et al. Spatio-temporal characteristics of climate change in the Yellow River source area from 1960 to 2019[J]. Arid Zone Research, 2021, 38(2):293-302. ] | |
[6] |
张镱锂, 祁威, 周才平, 等. 青藏高原高寒草地净初级生产力(NPP)时空分异[J]. 地理学报, 2013, 68(9):1197-1211.
doi: 10.11821/dlxb201309004 |
[ Zhang Yili, Qi Wei, Zhou Caiping, et al. Spatial and temporal variability in the net primary production(NPP) of alpine grassland on Tibetan Plateau from 1982 to 2009[J]. Acta Geographical Sinica, 2013, 68(9):1197-1211. ]
doi: 10.11821/dlxb201309004 |
|
[7] |
Chemodanov A, Jinjikhashvily G, Habiby O, et al. Net primary productivity, biofuel production and CO2 emissions reduction potential of Ulva sp. (Chlorophyta) biomass in a coastal area of the Eastern Mediterranean[J]. Energy Conversion and Management, 2017, 148:1497-1507.
doi: 10.1016/j.enconman.2017.06.066 |
[8] |
Zhang Y, Hu Q W, Zou F L. Spatio-temporal changes of vegetation Net Primary Productivity and its driving factors on the Qinghai-Tibetan Plateau from 2001 to 2017[J]. Remote Sensing, 2021, 13(8):1566-1587.
doi: 10.3390/rs13081566 |
[9] | 杨会巾, 李小玉, 刘丽娟, 等. 基于耦合模型的干旱区植被净初级生产力估算[J]. 应用生态学报, 2016, 27(6):1750-1758. |
[ Yang Huijin, Li Xiaoyu, Liu Lijuan, et al. Estimation of net primary productivity in arid region based on coupling model[J]. Chinese Journal of Applied Ecology, 2016, 27(6):1750-1758. ] | |
[10] | 赵苗苗, 刘熠, 杨吉林, 等. 基于HASM的中国植被NPP时空变化特征及其与气候的关系[J]. 生态环境学报, 2019, 28(2):215-225. |
[ Zhao Miaomiao, Liu Yi, Yang Jilin, et al. Spatio-temporal patterns of NPP and its relations to climate in China based on HASM[J]. Ecology and Environmental Sciences, 2019, 28(2):215-225. ] | |
[11] |
Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300(5625):1560-1563.
doi: 10.1126/science.1082750 |
[12] | 秦泗国, 钟国辉, 王景升. 那曲草地气候格局对草地NPP的影响及载畜量研究[J]. 干旱区资源与环境, 2010, 24(7):159-164. |
[ Qin Siguo, Zhong Guohui, Wang Jingsheng. The Influence of climate pattern on grassland NPP and the study on livestock carrying capacity in NagQu[J]. Journal of Arid Land Resources and Environment, 2010, 24(7):159-164. ] | |
[13] | 崔珍珍, 马超, 陈登魁. 1982—2015年科尔沁沙地植被时空变化及气候响应[J]. 干旱区研究, 2021, 38(2):536-544. |
[ Cui Zhenzhen, Ma Chao, Chen Dengkui. Spatiotemporal variation of vegetation in the Horqin Sandy Land and its response to climate change from 1982-2015[J]. Arid Zone Research, 2021, 38(2):536-544. ] | |
[14] | 张杰, 潘晓玲, 高志强, 等. 干旱生态系统净初级生产力估算及变化探测[J]. 地理学报, 2006, 61(1):15-25. |
[ Zhang Jie, Pan Xiaoling, Gao Zhiqiang, et al. Satellite estimates and change detection of Net Primary Productivity of oasis-desert based on ecosystem process with remotely sensed forcing in arid western China[J]. Acta Geographical Sinica, 2006, 61(1):15-25. ] | |
[15] | 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学, 2007, 31(3):414-424. |
[ Zhu Wenquan, Pan Yaozhong, Zhang Jinshui. Estimation of Net Primary Productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 31(3):414-424. ] | |
[16] | 朱莹莹, 韩磊, 赵永华, 等. 中国西北地区NPP模拟及其时空格局[J]. 生态学杂志, 2019, 38(6):1861-1871. |
[ Zhu Yingying, Han Lei, Zhao Yonghua, et al. Simulation and spatio-temporal of vegetion NPP in Northwest China[J]. Chinese Journal of Ecology, 2019, 38(6):1861-1871. ] | |
[17] |
崔林丽, 杜华强, 史军, 等. 中国东南部植被NPP的时空格局变化及其与气候的关系研究[J]. 地理科学, 2016, 36(5):787-793.
doi: 10.13249/j.cnki.sgs.2016.05.018 |
[ Cui Linli, Du Huaqiang, Shi Jun, et al. Spatial and temporal pattern of vegetation NPP and its relationship with climate in the southeastern China[J]. Scientia Geographica Sinica, 2016, 36(5):787-793. ]
doi: 10.13249/j.cnki.sgs.2016.05.018 |
|
[18] |
Ge W Y, Deng L Q, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of Total Environment, 2021, 773:145648.
doi: 10.1016/j.scitotenv.2021.145648 |
[19] | 姬盼盼, 高敏华, 杨晓东. 中国西北部干旱区NPP驱动力分析——以新疆伊犁河谷和天山山脉部分区域为例[J]. 生态学报, 2019, 39(3):2995-3006. |
[ Ji Panpan, Gao Minhua, Yang Xiaodong. Analysis of NPP driving force in an arid region of Northwest China: A case study in Yili Valley and parts of Tianshan Mountains, Xinjiang, China[J]. Acta Ecologica Sinica, 2019, 39(3):2995-3006. ] | |
[20] |
Liu F, Yan H M, Gu F X, et al. Net Primary Productivity increased on the Loess Plateau following implementation of the Grain to Green Program[J]. Journal of Resources and Ecology, 2017, 8(4):413-421.
doi: 10.5814/j.issn.1674-764x.2017.04.014 |
[21] |
Bryan B A, Gao L, Ye Y Q, et al. China’s response to a national land-system sustainability emergency[J]. Nature, 2018, 559(7713):193-204.
doi: 10.1038/s41586-018-0280-2 |
[22] | 韩丹丹, 穆兴民, 高鹏, 等. 黄土高原地区植被变化及其对极端气候的响应[J]. 水土保持通报, 2020, 40(2):247-254. |
[ Han Dandan, Mu Xingmin, Gao Peng, et al. Dynamic changes of vegetation in Loess Plateau and its response to extreme climate[J]. Bulletin of Soil and Water Conservation, 2020, 40(2):247-254. ] | |
[23] | 程晓鑫, 何远梅, 张岩. 黄土高原植被恢复与局地气候变化的关系[J]. 中国水土保持科学, 2018, 16(4):25-33. |
[ Cheng Xiaoxin, He Yuanmei, Zhang Yan. Correlations between vegetation restoratiom and regional climate change in the Loess Plateau[J]. Science of Soil and Water Conservation, 2018, 16(4):25-33. ] | |
[24] | 宋永永, 薛东前, 马蓓蓓, 等. 黄土高原城镇化过程及其生态环境响应格局[J]. 经济地理, 2020, 40(6):174-184. |
[ Song Yongyong, Xue Dongqian, Ma Beibei, et al. Urbanization process and its ecological environment response pattern on the Loess Plateau, China[J]. Economic Geogragphy, 2020, 40(6):174-184. ] | |
[25] | 修丽娜, 颜长珍, 钱大文, 等. 生态工程背景下黄土高原植被变化时空特征及其驱动力[J]. 水土保持通报, 2019, 39(4):214-221. |
[ Xiu Lina, Yan Changzhen, Qian Dawen, et al. Analysis of spatial-temporal change and driving forces of vegetation in Loess Plateau under background of ecological engineering[J]. Bulletin of Soil and Water Conservation, 2019, 39(4):214-221. ] | |
[26] | 朱文泉, 潘耀忠, 龙中华, 等. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J]. 遥感学报, 2005, 20(3):300-307. |
[ Zhu Wenquan, Pan Yaozhong, Long Zhonghua, et al. Estimating Net Primary Productivity of terrestrial vegetation based on GIS and RS: A case study in Inner Mongolia, China[J]. National Remote Sensing Bulletin, 2005, 20(3):300-307. ] | |
[27] |
Yin L C, Feng X M, Fu B J, et al. Irrigation water consumption of irrigated cropland and its dominant factor in China from 1982 to 2015[J]. Advances in Water Resources, 2020, 143:103661.
doi: 10.1016/j.advwatres.2020.103661 |
[28] | Sun Y L, Yang Y L, Zhang L, et al. The relative roles of climate variations and human activities in vegetation change in North China[J]. Physics and Chemistry of the Earth, 2015, 87-88:67-78. |
[29] |
Teng M J, Zeng L X, Hu W J, et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China[J]. Science of Total Environment, 2020, 714:136691.
doi: 10.1016/j.scitotenv.2020.136691 |
[30] |
Feng X M, Fu B J, Piao S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11):1019-1022.
doi: 10.1038/nclimate3092 |
[31] |
Li G, Sun S B, Han J C, et al. Impacts of Chinese grain for green program and climate change on vegetation in the Loess Plateau during 1982-2015[J]. Science of Total Environment, 2019, 660:177-187.
doi: 10.1016/j.scitotenv.2019.01.028 |
[32] | 张江, 袁旻舒, 张婧, 等. 近30年来青藏高原高寒草地NDVI动态变化对自然及人为因子的响应[J]. 生态学报, 2020, 40(18):6269-6281. |
[ Zhang Jiang, Yuan Minshu, Zhang Jing, et al. Responses of the NDVI of alpine grasslands on the Qinghai-Tibetan Plateau to climate change and human activities over the last 30 years[J]. Acta Ecologica Sinica, 2020, 40(18):6269-6281. ] | |
[33] |
Shi S Y, Yu J J, Wang F, et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau[J]. Science of Total Environment, 2021, 755(2):142419.
doi: 10.1016/j.scitotenv.2020.142419 |
[34] |
Li Y Z, Fan J W, Hu Z M, et al. Comparison of evapotranspiration components and water-use efficiency among different land use patterns of temperate steppe in the northern China pastoral-farming ecotone[J]. International Journal of Biometeorology, 2016, 60(6):827-841.
doi: 10.1007/s00484-015-1076-9 |
[35] | 马柱国, 符淙斌, 周天军, 等. 黄河流域气候与水文变化的现状及思考[J]. 中国科学院院刊, 2020, 35(1):52-60. |
[ Ma Zhuguo, Fu Congbin, Zhou Tianjun, et al. Status and ponder of climate and hydrology changes in the Yellow River Basin[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(1):52-60. ] | |
[36] |
Wang Y Q, Shao M A, Liu Z P, et al. Investigation of factors controlling the regional-scale distribution of dried soil layers under forestland on the Loess Plateau, China[J]. Surveys in Geophysics, 2011, 33(2):311-330.
doi: 10.1007/s10712-011-9154-y |
[37] | 代子俊, 赵霞, 李冠稳, 等. 基于GIMMS NDVI 3g. v1的近34年青海省植被生长季NDVI时空变化特征[J]. 草业科学, 2018, 35(4):713-725. |
[ Dai Zijun, Zhao Xia, Li Guanwen, et al. Spatial-temporal variations in NDVI in vegetation-growing season in Qinghai based on GIMMS NDVI 3g. v1 in past 34 years[J]. Pratacultural Science, 2018, 35(4):713-725. ] | |
[38] | 易浪, 任志远, 张翀, 等. 黄土高原植被覆盖变化与气候和人类活动的关系[J]. 资源科学, 2014, 36(1):166-174. |
[ Yi Lang, Ren Zhiyuan, Zhang Chong, et al. Vegetation cover, climate and human activities on the Loess Plateau[J]. Resources Science, 2014, 36(1):166-174. ] | |
[39] |
Gang C C, Zhao W, Zhao T, et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, northern China[J]. Science of Total Environment, 2018, 645:827-836.
doi: 10.1016/j.scitotenv.2018.07.161 |
[40] |
Zheng K, Wei J Z, Pei J Y, et al. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau[J]. Science of Total Environment, 2019, 660:236-244.
doi: 10.1016/j.scitotenv.2019.01.022 |
[41] |
Li J J, Peng S Z, Li Z. Detecting and attributing vegetation changes on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2017, 247:260-270.
doi: 10.1016/j.agrformet.2017.08.005 |
[1] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
[2] | 胡广录,陶虎,焦娇,白元儒,陈海志,麻进. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[3] | 周小东, 常顺利, 王冠正, 张毓涛, 喻树龙, 张同文. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[4] | 张晓敏, 张东梅, 张伟. 人类活动对额尔齐斯河流域碳储量的影响[J]. 干旱区研究, 2023, 40(8): 1333-1345. |
[5] | 孟乘枫, 仲涛, 郑江华, 王南, 刘泽轩, 任祥源. 昆仑山冰湖分布时空特征及驱动力[J]. 干旱区研究, 2023, 40(7): 1094-1106. |
[6] | 赵艳芬, 潘伯荣. 气候变化情景下革苞菊属在中国的潜在地理分布[J]. 干旱区研究, 2023, 40(6): 949-957. |
[7] | 姚春艳, 刘洪鹄, 刘竞. 长江源区1980—2020年水沙变化规律[J]. 干旱区研究, 2023, 40(5): 726-736. |
[8] | 吕锦心, 梁康, 刘昌明, 张仪辉, 刘璐. 无定河流域土地覆被空间分异机制及相关水碳变量变化[J]. 干旱区研究, 2023, 40(4): 563-572. |
[9] | 段雨佳, 何毅, 赵杰, 吴琼. 人类活动对秦岭月河流域径流变化的影响分析[J]. 干旱区研究, 2023, 40(4): 605-614. |
[10] | 王怡恩, 饶良懿. 气候因素和人类活动对砒砂岩区植被净初级生产力的影响[J]. 干旱区研究, 2023, 40(12): 1982-1995. |
[11] | 裴宏泽, 赵亚超, 张廷龙. 2000—2020年黄土高原NEP时空格局与驱动力[J]. 干旱区研究, 2023, 40(11): 1833-1844. |
[12] | 戴君, 胡海珠, 毛晓敏, 张霁. 基于CMIP6多模式预估数据的石羊河流域未来气候变化趋势分析[J]. 干旱区研究, 2023, 40(10): 1547-1562. |
[13] | 刘欢欢, 陈印, 刘悦, 刚成诚. 基于随机森林模型的黄土高原草地净初级生产力时空格局及未来演变趋势模拟[J]. 干旱区研究, 2023, 40(1): 123-131. |
[14] | 姚岱均, 刘康, 惠俞翔, 王凯欣. 天水麦积山油松树轮宽度对气候变化的响应及其机制[J]. 干旱区研究, 2023, 40(1): 19-29. |
[15] | 陈红光, 孟凡浩, 萨楚拉, 罗敏, 王牧兰, 刘桂香. 北方牧区草原内陆河流域径流演变特征及其驱动因素分析[J]. 干旱区研究, 2023, 40(1): 39-50. |
|