[1] |
周波涛. 全球气候变暖: 浅谈从AR5到AR6的认知进展[J]. 大气科学学报, 2021, 44(5): 667-671.
|
|
[Zhou Botao. Global warming: scientific progress from AR5 to AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 667-671. ]
|
[2] |
Halverson J L, Jones M T, Firestone K M. Release of intracellular solutes by four soil bacteria exposed to dilution stress[J]. Soil Science Society of America Journal, 2000, 64(5): 1630-1637.
|
[3] |
Joshua S C T B, Matthew W. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 2007, 88(6): 1386-94.
doi: 10.1890/06-0219
pmid: 17601131
|
[4] |
Chang E H, Chen T H, Tian G L. The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations[J]. Ecology Environment & Conservation, 2016.
|
[5] |
Davidson A E, Janssens A I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature: International Weekly Journal of Science, 2006, 440(Suppl. ): 165-173.
|
[6] |
刘峰, 赵鹏程, 张昀, 等. 微生物角度揭示气候变暖对土壤有机碳转化影响的研究综述[J]. 土壤通报, 2022, 53(6): 1492-1498.
|
|
[Liu Feng, Zhao Pengcheng, Zhang Yun, et al. Effects of climate warming on soil organic carbon storage from the viewpoint of Soil Microorganism[J]. Chinese Journal of Soil Science, 2022, 53(6): 1492-1498. ]
|
[7] |
Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264.
doi: 10.1111/j.1461-0248.2008.01245.x
pmid: 18823393
|
[8] |
张睿媛, 袁丹, 秦树平, 等. 碳氮磷化学计量比对土壤有机碳矿化激发效应的影响[J]. 中国生态农业学报(中英文), 2023, 31(8): 1311-1321.
|
|
[Zhang Ruiyuan, Yuan Dan, Qin Shuping, et al. Effects of carbon, nitrogen, and phosphorus stoichiometry on the priming of soil carbon mineralization[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1311-1321. ]
|
[9] |
赵宇航, 殷浩凯, 胡雪纯, 等. 长期秸秆还田褐土有机碳矿化特征及其驱动力[J]. 环境科学, 2024, 45(4): 2353-2362.
|
|
[Zhao Yuhang, Yin Haokai, Hu Xuechun, et al. Characteristics and driving forces of organic carbon mineralization in brown soil with long-term straw returning[J]. Environmental Science, 2024, 45(4): 2353-2362. ]
|
[10] |
于淑华, 张丽霞, 谢雪迎, 等. 同水分模式对山东茶园土壤氮素动态的影响[J]. 土保持学报, 2021, 35(4): 289-298.
|
|
[Yu Shuhua, Zhang Lixia, Xie Xueying, et al. Effects of water regimes on soil nitrogen dynamics in tea Garden in Shandong Province[J]. Journal of Soil and Water Conservation, 2021, 35(4): 289-298. ]
|
[11] |
杨媛媛, 李占斌, 高海东, 等. 大理河流域淤地坝拦沙贡献率分析[J]. 水土保持学报, 2021, 35(1): 85-89.
|
|
[Yang Yuanyuan, Li Zhanbin, Gao Haidong, et al. Analysis on the contribution rate of sediment reduction of check dams in Dali River Basin[J]. Journal of Soil and Water Conservation, 2021, 35(1): 85-89. ]
|
[12] |
Tian W P, Zhan B, Jing M, et al. The effects of freeze-thaw process on soil water migration in dam and slope farmland on the Loess Plateau, China[J]. The Science of the Total Environment, 2019, 666: 721-730.
doi: S0048-9697(19)30782-X
pmid: 30812006
|
[13] |
Liu X J, Zhang Y, Li P, et al. Changes in the biological “regulators” of organic carbon mineralization in silted soils of check dams as a result of wet-dry cycles[J]. Land Degradation & Development, 2023, 35(2): 705-716.
|
[14] |
Kebede M, Beyene S, Abera Y. Modeling the influence of floriculture effluent on soil quality and dry matter yield of wheat on vertisols at debre zeit, ethiopia[J]. Journal of Environment and Earth Science, 2012.
|
[15] |
Moorhead L D, Rinkes L Z, Sinsabaugh L R, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models[J]. Frontiers in Microbiology, 2013, 4: 223.
doi: 10.3389/fmicb.2013.00223
pmid: 23964272
|
[16] |
Zhang Y, Liu X J, Li P, et al. Critical factors in soil organic carbon mineralization induced by drying, wetting and wet-dry cycles in a typical watershed of Loess Plateau[J]. Journal of Environmental Management, 2024, 362: 121313.
|
[17] |
Liu L L, Wang X, Lajeunesse M, et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes[J]. Global Change Biology, 2016, 22(4): 1394-405.
doi: 10.1111/gcb.13156
pmid: 26554753
|
[18] |
Chantal H, Keith H, Fernando S, et al. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie[J]. Soil Biology and Biochemistry, 2006, 38(8): 2104-2116.
|
[19] |
Xiang S R, Doyle A, Holden P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry, 2008, 40(9): 2281-2289.
|
[20] |
王君, 宋新山, 王苑. 多重干湿交替对土壤有机碳矿化的影响[J]. 环境科学与技术, 2013, 36(11): 31-35.
|
|
[Wang Jun, Song Xinshan, Wang Yuan. Multiple drying-wetting cycles on mineralization of organic carbon in Soil[J]. Environment Science and Technology, 2013, 36(11): 31-35. ]
|
[21] |
高俊琴, 徐兴良, 张锋, 等. 水分梯度对若尔盖高寒湿地土壤活性有机碳分布的影响[J]. 水土保持学报, 2008, 22(3): 126-131.
|
|
[Gao Junqin, Xu Xinliang, Zhang Feng, et al. Distribution characteristics of soil labile carbon along water table gradient of alpine wetland Soils[J]. Journal of Soil and Water Conservation, 2008, 22(3): 126-131. ]
|
[22] |
陈玉军, 李婷, 朱立安, 等. 湛江红树林湿地不同淹水梯度下土壤养分及其化学计量特征[J]. 西北林学院学报, 2023, 38(5): 19-27.
|
|
[Chen Yujun, Li Ting, Zhu Li’an, et al. Soil nutrients and stoichiometry along different flooding gradients in the Zhan Jiang Mangrove Wetland[J]. Journal of Northwest Forestry University, 2023, 38(5): 19-27. ]
|
[23] |
张红星, 王效科, 冯宗炜, 等. 黄土高原小麦田土壤呼吸对强降雨的响应[J]. 生态学报, 2008, 28(12): 6189-6196.
|
|
[Zhang Hongxing, Wang Xiaoke, Feng Zongwei, et al. The great rainfall effect on soil respiration of wheat field in semi-arid region of the Loess Plateau[J]. Acta Ecologica Sinica, 2008, 28(12): 6189-6196. ]
|
[24] |
Zhang Q J, Wang Z S, Xia S X, et al. Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones[J]. Science of the Total Environment, 2022, 822: 153512.
|
[25] |
Liu C Y, Tian H X, Li H Y, et al. The accuracy in the assessment of arsenic toxicity using soil alkaline phosphatase depends on soil water contents[J]. Ecological Indicators, 2019, 102: 457-465.
|
[26] |
马伟伟, 王丽霞, 李娜, 等. 不同水氮水平对川西亚高山林地土壤酶活性的影响[J]. 生态学报, 2019, 39(19): 7218-7228.
|
|
[Ma Weiwei, Wang Lixia, Li Na, et al. Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content[J]. Journal of Ecology, 2019, 39(19): 7218-7228. ]
|
[27] |
肖如武, 黄楚龙, 宗钊辉, 等. 低磷胁迫对烤烟根系有机酸含量及土壤磷酸酶活性的影响[J]. 广东农业科学, 2021, 48(8): 74-82.
|
|
[Xiao Ruwu, Huang Chulong, Zong Zhaohui, et al. Effects of low phosphorus stress on root organic acid content and soil phosphatase activity of flue-cured tobacco[J]. Guangdong Agricultural Sciences, 2021, 48(8): 74-82. ]
|
[28] |
王梅, 晏梓然, 赵子文, 等. 黄土高原植被演替过程中相对土壤酶活性的变化特征[J]. 水土保持学报, 2021, 35(5): 181-187.
|
|
[Wang Mei, Yan Ziran, Zhao Ziwen, et al. Variation characteristics of specific soil enzyme activities during vegetation succession on the loess plateau[J]. Journal of Soil and Water Conservation 2021, 35(5): 181-187. ]
|
[29] |
Wang Z Y, Sun G, Luo P, et al. A Study of soil-dynamics based on a simulated drought in an alpine meadow on the Tibetan plateau[J]. Journal of Mountain Science, 2013, 10(5): 833-844.
|
[30] |
潘新雅, 李军保, 陈阳, 等. 6个紫花苜蓿品种根系形态结构对低磷胁迫的响应[J]. 草地学报, 2021, 29(11): 2494-2504.
doi: 10.11733/j.issn.1007-0435.2021.11.015
|
|
[Pan Xinya, Li Junbao, Chen Yang, et al. Response of root morphology and anatomical structure of six alfalfa cultivars to phosphorus deficiency[J]. Acta Agrestia Sinica, 2021, 29(11): 2494-2504. ]
doi: 10.11733/j.issn.1007-0435.2021.11.015
|
[31] |
Gross A, Angert A. Use of 13C-and phosphate18O-labeled substrate for studying phosphorus and carbon cycling in soils: A proof of concept[J]. Rapid Communications in Mass Spectrometry: RCM, 2017, 31(11): 969-977.
|
[32] |
阮长明, 唐国勇, 杜寿康, 等. 金沙江干热河谷不同海拔土壤碳氮磷化学计量和酶活性研究[J]. 西南农业学报, 2023, 36(11): 2464-2472.
|
|
[Ruan Changming, Tang Guoyong, Du Shoukang, et al. Stoichiometry of soil carbon, nitrogen, and phosphorus, and enzyme activities at various elevations in the Dry-Hot Valley of the Jinsha River[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2464-2472. ]
|
[33] |
刘亚军, 吴娟, 邹锋, 等. 鄱阳湖湿地灰化薹草洲滩土壤微生物和酶特性对水分梯度的响应[J]. 湿地科学, 2017, 15(2): 269-275.
|
|
[Liu Yajun, Wu Juan, Zou Feng, et al. Response of properties of soil microbes and enzymes in beach covered by Carex cinerascens in Poyang Lake wetlands to moisture gradient[J]. Wetland Science, 2017, 15(2): 269-275. ]
|
[34] |
宋霄君, 吴会军, 武雪萍, 等. 长期保护性耕作可提高表层土壤碳氮含量和根际土壤酶活性[J]. 植物营养与肥料学报, 2018, 24(6): 1588-1597.
|
|
[Song Xiaojun, Wu Huijun, Wu Xueping, et al. Long-term conservation tillage improves surface soil carbon and nitrogen content and rhizosphere soil enzyme activities[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(6): 1588-1597. ]
|
[35] |
梅孔灿, 陈岳民, 范跃新, 等. 凋落叶和磷添加对马尾松林土壤碳激发效应的影响[J]. 土壤学报, 2022, 59(4): 1089-1099.
|
|
[Mei Kongcan, Chen Yuemin, Fan Yuexin, et al. Effects of litters and phosphorus addition on soil carbon priming effect in Pinus massoniana forest[J]. Acta Pedologica Sinica, 2022, 59(4): 1089-1099. ]
|